Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1970, Volume 10, Issue 4, Pages 475–502
DOI: https://doi.org/10.1070/SM1970v010n04ABEH002160
(Mi sm3384)
 

This article is cited in 10 scientific papers (total in 10 papers)

Stability of the problem of recovering the Sturm–Liouville operator from the spectral function

V. A. Marchenko, K. V. Maslov
References:
Abstract: We consider a differential operator $\mathscr L=(h,q(x))$ generated by a Sturm-Liouville operation $l[y]=-y''+q(x)y$ on the linear manifold of finite twice-differentiable functions $y(x)$ satisfying the boundary condition $y'(0)-hy(0)=0$. Let $\rho(\mu)$ be the spectral function of this operator. From $\rho(\mu)$, as is well known, we can recover the operator $\mathscr L$, i.e. the number $h$ and the function $q(x)$. Let $V_\alpha^A$ be the set of operators $\mathscr L$ for which
$$ |h|\leqslant A,\qquad\int_0^x|q(t)|\,dt\leqslant\alpha(x)\quad(x<0<\infty). $$

We now investigate how much information about the operator $\mathscr L\in V_\alpha^A$ can be obtained if its spectral function $\rho(\mu)$ is known only for values of $\mu$ on a finite interval.
In the present article we obtain estimates for the difference in the potentials $q_1(x)-q_2(x)$, in the boundary parameters $h_1-h_2$ and in the solutions of the corresponding differential equations under the condition that the spectral functions of the two operators in $V_\alpha^A$ coincide on a finite interval.
Bibliography: 7 titles.
Received: 10.10.1969
Bibliographic databases:
UDC: 517.43
Language: English
Original paper language: Russian
Citation: V. A. Marchenko, K. V. Maslov, “Stability of the problem of recovering the Sturm–Liouville operator from the spectral function”, Math. USSR-Sb., 10:4 (1970), 475–502
Citation in format AMSBIB
\Bibitem{MarMas70}
\by V.~A.~Marchenko, K.~V.~Maslov
\paper Stability of the problem of recovering the Sturm--Liouville operator from the spectral function
\jour Math. USSR-Sb.
\yr 1970
\vol 10
\issue 4
\pages 475--502
\mathnet{http://mi.mathnet.ru/eng/sm3384}
\crossref{https://doi.org/10.1070/SM1970v010n04ABEH002160}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=264154}
\zmath{https://zbmath.org/?q=an:0195.43301|0216.17102}
Linking options:
  • https://www.mathnet.ru/eng/sm3384
  • https://doi.org/10.1070/SM1970v010n04ABEH002160
  • https://www.mathnet.ru/eng/sm/v123/i4/p525
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025