|
This article is cited in 17 scientific papers (total in 17 papers)
Asymptotics of the eigenvalues of the Schrödinger operator
G. V. Rozenblum
Abstract:
We examine the selfadjoint operator $H=-\Delta+V$ in $L_2(\mathbf R^m)$. We assume that the potential $V(x)\geqslant1$ tends to $+\infty$ as $|x|\to\infty$. Under these conditions the spectrum of $H$ is discrete. In the paper the well-known asymptotic formula
\begin{equation}
N(\lambda,H)\sim\gamma_m\int(\lambda-V(x))_+^{m/2}\,dx,\qquad\lambda\to\infty,
\tag{\ast}
\end{equation}
for the distribution function of the eigenvalues is justified under very weak assumptions on $V$, namely the following conditions:
1) $\sigma(2\lambda)\leqslant c\sigma(\lambda)$, where $\sigma(\lambda)=\operatorname{mes}\{x:V(x)<\lambda\}$;
2) $V(x)\leqslant cV(y)$ almost everywhere when $|x-y|<1$;
3) there exist a continuous function $\eta(t)\geqslant0$, $0\leqslant t<1$, $\eta(0)=0$, and an index $\beta\in[0,1/2)$ such that
$$
\int_{|x-y|\leqslant1,\,|x+z-y|\leqslant1}|V(x+z)-V(x)|\,dx<\eta(|z|)|z|^{2\beta}V(y)^{1+\beta}
$$
for any $y\in\mathbf R^m$, $z\in\mathbf R^m$, $|z|<1$.
Bibliography: 12 titles.
Received: 19.01.1973
Citation:
G. V. Rozenblum, “Asymptotics of the eigenvalues of the Schrödinger operator”, Math. USSR-Sb., 22:3 (1974), 349–371
Linking options:
https://www.mathnet.ru/eng/sm3406https://doi.org/10.1070/SM1974v022n03ABEH002167 https://www.mathnet.ru/eng/sm/v135/i3/p347
|
|