Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1974, Volume 22, Issue 3, Pages 349–371
DOI: https://doi.org/10.1070/SM1974v022n03ABEH002167
(Mi sm3406)
 

This article is cited in 17 scientific papers (total in 17 papers)

Asymptotics of the eigenvalues of the Schrödinger operator

G. V. Rozenblum
References:
Abstract: We examine the selfadjoint operator $H=-\Delta+V$ in $L_2(\mathbf R^m)$. We assume that the potential $V(x)\geqslant1$ tends to $+\infty$ as $|x|\to\infty$. Under these conditions the spectrum of $H$ is discrete. In the paper the well-known asymptotic formula
\begin{equation} N(\lambda,H)\sim\gamma_m\int(\lambda-V(x))_+^{m/2}\,dx,\qquad\lambda\to\infty, \tag{\ast} \end{equation}
for the distribution function of the eigenvalues is justified under very weak assumptions on $V$, namely the following conditions:
1) $\sigma(2\lambda)\leqslant c\sigma(\lambda)$, where $\sigma(\lambda)=\operatorname{mes}\{x:V(x)<\lambda\}$;
2) $V(x)\leqslant cV(y)$ almost everywhere when $|x-y|<1$;
3) there exist a continuous function $\eta(t)\geqslant0$, $0\leqslant t<1$, $\eta(0)=0$, and an index $\beta\in[0,1/2)$ such that
$$ \int_{|x-y|\leqslant1,\,|x+z-y|\leqslant1}|V(x+z)-V(x)|\,dx<\eta(|z|)|z|^{2\beta}V(y)^{1+\beta} $$
for any $y\in\mathbf R^m$, $z\in\mathbf R^m$, $|z|<1$.
Bibliography: 12 titles.
Received: 19.01.1973
Bibliographic databases:
UDC: 517.43
MSC: 35J10, 35P20, 47F05
Language: English
Original paper language: Russian
Citation: G. V. Rozenblum, “Asymptotics of the eigenvalues of the Schrödinger operator”, Math. USSR-Sb., 22:3 (1974), 349–371
Citation in format AMSBIB
\Bibitem{Roz74}
\by G.~V.~Rozenblum
\paper Asymptotics of the eigenvalues of the Schr\"odinger operator
\jour Math. USSR-Sb.
\yr 1974
\vol 22
\issue 3
\pages 349--371
\mathnet{http://mi.mathnet.ru/eng/sm3406}
\crossref{https://doi.org/10.1070/SM1974v022n03ABEH002167}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=361470}
\zmath{https://zbmath.org/?q=an:0296.35064}
Linking options:
  • https://www.mathnet.ru/eng/sm3406
  • https://doi.org/10.1070/SM1974v022n03ABEH002167
  • https://www.mathnet.ru/eng/sm/v135/i3/p347
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025