|
This article is cited in 37 scientific papers (total in 37 papers)
On a dual problem. I. General results. Applications to Frèchet spaces
Yu. F. Korobeinik
Abstract:
Let $H$ be a separated locally convex space; $x_k\in H$, $x_k\ne0$, $k=1,2,\dots$ . The author shows that if $H$ is a Frèchet space or an $LN^*$-space, then the system $\{x_k\}$ is a basis (topological or absolute) in the closure of its linear span if and only if the system of equations $\varphi(x_k)=d_k$, $k=1,2,\dots$, has a solution $\varphi$ in $H'$ for any sequence $\{d_k\}$ from a certain space $E_1$ (respectively, from $E_2$ for an absolute basis).
Bibliography: 32 titles.
Received: 16.04.1974
Citation:
Yu. F. Korobeinik, “On a dual problem. I. General results. Applications to Frèchet spaces”, Math. USSR-Sb., 26:2 (1975), 181–212
Linking options:
https://www.mathnet.ru/eng/sm3648https://doi.org/10.1070/SM1975v026n02ABEH002476 https://www.mathnet.ru/eng/sm/v139/i2/p193
|
| Statistics & downloads: |
| Abstract page: | 944 | | Russian version PDF: | 183 | | English version PDF: | 44 | | References: | 120 |
|