Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1975, Volume 27, Issue 4, Pages 481–502
DOI: https://doi.org/10.1070/SM1975v027n04ABEH002525
(Mi sm3723)
 

This article is cited in 11 scientific papers (total in 11 papers)

On lacunary series

I. M. Mikheev
References:
Abstract: This paper investigates properties of trigonometric $S_p$-systems ($p>2$) and Banach systems. In particular, the following theorems are established.
Theorem 1. {\it Let the system $\{\cos n_kx,\sin n_kx\}$ be an $S_p$-system $(n_k$ integers, $p>2)$. Then if the series $a_0+\sum a_k\cos n_kx+b_k\sin n_k x$ converges on a set of positive measure it follows that $a_0^2+\sum a_k^2+b_k^2<\infty$. If the same series converges to zero on a set of positive measure, all its coefficients are zero}.
Theorem 2. {\it Let the system $\{\cos n_kx,\sin n_kx\}$ be a Banach system. Let $\alpha(\{n_k\},[a,b])$ be the number of terms of the sequence $\{n_k\}$ that lie on $[a,b]$. Then}
$$ \lim_{h\to+\infty}\sup_a\frac{\alpha(\{n_k\},[a,a+h])}h=0. $$

Bibliography: 12 titles.
Received: 15.04.1975
Bibliographic databases:
UDC: 517.522.3
MSC: 42A44
Language: English
Original paper language: Russian
Citation: I. M. Mikheev, “On lacunary series”, Math. USSR-Sb., 27:4 (1975), 481–502
Citation in format AMSBIB
\Bibitem{Mik75}
\by I.~M.~Mikheev
\paper On~lacunary series
\jour Math. USSR-Sb.
\yr 1975
\vol 27
\issue 4
\pages 481--502
\mathnet{http://mi.mathnet.ru/eng/sm3723}
\crossref{https://doi.org/10.1070/SM1975v027n04ABEH002525}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=402396}
\zmath{https://zbmath.org/?q=an:0314.42012}
Linking options:
  • https://www.mathnet.ru/eng/sm3723
  • https://doi.org/10.1070/SM1975v027n04ABEH002525
  • https://www.mathnet.ru/eng/sm/v140/i4/p538
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025