Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1974, Volume 24, Issue 2, Pages 223–256
DOI: https://doi.org/10.1070/SM1974v024n02ABEH002186
(Mi sm3752)
 

This article is cited in 48 scientific papers (total in 48 papers)

Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval

V. M. Badkov
References:
Abstract: Let $\sigma_p=\{p_n(t)\}_{n=0}^\infty$ be the system of polynomials orthonormal on $[-1,1]$ with weight
$$ p(t)=H(t)(1-t)^\alpha(1+t)^\beta\prod_{\nu=1}^m|t-x_\nu|^{\gamma_\nu}, $$
where $-1<x_1<\dots<x_m<1$, $\alpha,\beta,\gamma_\nu>-1$ ($\nu=1,\dots,m$), $H(t)>0$ on $[-1,1]$ and $\omega(H,\delta)\delta^{-1}\in L(0,2)$ ($\omega(H,\delta)$ is the modulus of continuity in $C(-1,\,1)$). Consider the class of functions $(qL)^r=\{f(t):q(t)f(t)\in L^r(-1,1)\}$, where $q(t)=(1-t)^A(1+t)^B\times\prod_{\nu=1}^m|t-x_\nu|^{\Gamma_\nu}.$ Let $S_n^{(p)}(f)=S_n^{(p)}(f,x)$ ($n=0,1,\dots$) denote the partial sums of the Fourier series of a function $f$ with repect to the system $\sigma_p$.
In the paper, conditions are obtained on the exponents of the functions $p(t)$ and $q(t)$ and the exponent $r\in(1,\infty)$ that are necessary and sufficient for the boundedness in $(qL)^r$ of each of the operators $S_n^{(p)}(f,x)$ and $\sup_{n\geqslant0}\{|S_n^{(p)}(f,x)|\}$. Sufficient conditions for the convergence of the partial sums $S_n^{(p)}(f)$ to $f\in(qL)^r$ in the mean and almost everywhere in $(-1,\,1)$ are revealed as a consequence. It is proved that these conditions are best possible on the class $(qL)^r$ (for $\omega(H,\delta)\delta^{-1}\in L^2(0,2)$ in the case of convergence almost everywhere). Estimates of the polynomials $p_n(t)$ and necessary and sufficient conditions for their boundedness in the mean are also obtained.
Bibliography: 26 titles.
Received: 30.07.1973
Bibliographic databases:
UDC: 517.512.7
MSC: 42A20, 42A56
Language: English
Original paper language: Russian
Citation: V. M. Badkov, “Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval”, Math. USSR-Sb., 24:2 (1974), 223–256
Citation in format AMSBIB
\Bibitem{Bad74}
\by V.~M.~Badkov
\paper Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval
\jour Math. USSR-Sb.
\yr 1974
\vol 24
\issue 2
\pages 223--256
\mathnet{http://mi.mathnet.ru/eng/sm3752}
\crossref{https://doi.org/10.1070/SM1974v024n02ABEH002186}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=355464}
\zmath{https://zbmath.org/?q=an:0311.42006}
Linking options:
  • https://www.mathnet.ru/eng/sm3752
  • https://doi.org/10.1070/SM1974v024n02ABEH002186
  • https://www.mathnet.ru/eng/sm/v137/i2/p229
  • This publication is cited in the following 48 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025