Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 6, Pages 811–832
DOI: https://doi.org/10.1070/SM2008v199n06ABEH003943
(Mi sm3889)
 

Various types of convergence of sequences of $\delta$-subharmonic functions

A. F. Grishin, A. Chouigui

V. N. Karazin Kharkiv National University
References:
Abstract: Let $v_n(z)$ be a sequence of $\delta$-subharmonic functions in some domain $G$. Conditions are studied under which the convergence of $v_n(z)$ as a sequence of generalized functions implies its convergence in the Lebesgue spaces $L_p(\gamma)$. Hörmander studied the case where $v_n(z)$ is a sequence of subharmonic functions and the measure $\gamma$ is the restriction of the Lebesgue measure to a compactum contained in $G$. In this paper a more general case is considered and theorems of two types are obtained. In theorems of the first type it is assumed that $\operatorname{supp}\gamma\Subset G$. In theorems of the second type it is assumed that the support of the measure is a compactum and $\operatorname{supp}\gamma\subset\overline G$. In the second case, $G$ is assumed to be the half-plane.
Bibliography: 11 titles.
Received: 29.05.2007
Bibliographic databases:
UDC: 517.574
MSC: Primary 31A05; Secondary 30D30
Language: English
Original paper language: Russian
Citation: A. F. Grishin, A. Chouigui, “Various types of convergence of sequences of $\delta$-subharmonic functions”, Sb. Math., 199:6 (2008), 811–832
Citation in format AMSBIB
\Bibitem{GriCho08}
\by A.~F.~Grishin, A.~Chouigui
\paper Various types of convergence of sequences of $\delta$-subharmonic functions
\jour Sb. Math.
\yr 2008
\vol 199
\issue 6
\pages 811--832
\mathnet{http://mi.mathnet.ru/eng/sm3889}
\crossref{https://doi.org/10.1070/SM2008v199n06ABEH003943}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2435272}
\zmath{https://zbmath.org/?q=an:1155.31002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259031600008}
\elib{https://elibrary.ru/item.asp?id=20359332}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52049094157}
Linking options:
  • https://www.mathnet.ru/eng/sm3889
  • https://doi.org/10.1070/SM2008v199n06ABEH003943
  • https://www.mathnet.ru/eng/sm/v199/i6/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025