Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2000, Volume 191, Issue 4, Pages 477–502
DOI: https://doi.org/10.1070/sm2000v191n04ABEH000468
(Mi sm468)
 

This article is cited in 4 scientific papers (total in 4 papers)

Hamiltonian structures of the first variation equations and symplectic connections

Yu. M. Vorob'ev

Moscow State Institute of Electronics and Mathematics
References:
Abstract: Necessary and sufficient conditions in terms of symplectic connections, ensuring that the first variation equation of a Hamiltonian system along a fixed invariant symplectic submanifold is also a Hamiltonian system with respect to some admissible symplectic structure are obtained. The class of admissible symplectic structures is distinguished by means of the natural condition of compatibility with the symplectic 2-form in the ambient space. Possible obstructions to the existence of a Hamiltonian structure on the first variation equation are investigated.
Received: 19.03.1999
Bibliographic databases:
UDC: 514.7+517.9
MSC: Primary 58F05, 53C05; Secondary 53C15
Language: English
Original paper language: Russian
Citation: Yu. M. Vorob'ev, “Hamiltonian structures of the first variation equations and symplectic connections”, Sb. Math., 191:4 (2000), 477–502
Citation in format AMSBIB
\Bibitem{Vor00}
\by Yu.~M.~Vorob'ev
\paper Hamiltonian structures of the~first variation equations and symplectic connections
\jour Sb. Math.
\yr 2000
\vol 191
\issue 4
\pages 477--502
\mathnet{http://mi.mathnet.ru/eng/sm468}
\crossref{https://doi.org/10.1070/sm2000v191n04ABEH000468}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1775040}
\zmath{https://zbmath.org/?q=an:0971.37025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000088115700010}
\elib{https://elibrary.ru/item.asp?id=14016920}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034338898}
Linking options:
  • https://www.mathnet.ru/eng/sm468
  • https://doi.org/10.1070/sm2000v191n04ABEH000468
  • https://www.mathnet.ru/eng/sm/v191/i4/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025