Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 4, Pages 569–594
DOI: https://doi.org/10.1070/SM2010v201n04ABEH004082
(Mi sm7547)
 

This article is cited in 21 scientific papers (total in 21 papers)

An example of multiple gaps in the spectrum of a periodic waveguide

S. A. Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
References:
Abstract: A periodic waveguide is constructed, whose shape depends on a small parameter $h>0$, in which the essential spectrum of the operators for some boundary-value problems (Dirichlet, Neumann, and mixed under certain restrictions) for a formally self-adjoint elliptic system of second-order differential equations acquires any pre-assigned number of gaps. The geometric shape of the waveguide can be interpreted as an infinite periodic set of beads connected by thin, short ligaments. The proof of that gaps appear is based on an application of the max-min principle and the weighted Korn inequality.
Bibliography: 43 titles.
Keywords: gaps in the essential spectrum, formally self-adjoint elliptic system of differential equations with polynomial property.
Received: 04.03.2009
Bibliographic databases:
UDC: 517.956.227+517.958+631.372.8
MSC: Primary 35J57; Secondary 35J20, 35P15
Language: English
Original paper language: Russian
Citation: S. A. Nazarov, “An example of multiple gaps in the spectrum of a periodic waveguide”, Sb. Math., 201:4 (2010), 569–594
Citation in format AMSBIB
\Bibitem{Naz10}
\by S.~A.~Nazarov
\paper An example of multiple gaps in the spectrum of a~periodic waveguide
\jour Sb. Math.
\yr 2010
\vol 201
\issue 4
\pages 569--594
\mathnet{http://mi.mathnet.ru/eng/sm7547}
\crossref{https://doi.org/10.1070/SM2010v201n04ABEH004082}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2675342}
\zmath{https://zbmath.org/?q=an:1193.35038}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201..569N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279452200009}
\elib{https://elibrary.ru/item.asp?id=19066197}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954793100}
Linking options:
  • https://www.mathnet.ru/eng/sm7547
  • https://doi.org/10.1070/SM2010v201n04ABEH004082
  • https://www.mathnet.ru/eng/sm/v201/i4/p99
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025