Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 8, Pages 1137–1166
DOI: https://doi.org/10.1070/SM2003v194n08ABEH000760
(Mi sm760)
 

This article is cited in 3 scientific papers (total in 3 papers)

Approaches to the summability of divergent multidimensional integrals

G. M. Vainikkoa, I. K. Lifanovb

a Helsinki University of Technology
b Institute of Numerical Mathematics, Russian Academy of Sciences
References:
Abstract: Under discussion are various approaches to the concept of summability (finding the finite part – f.p. ) of divergent integrals with integrand represented as a product of two functions, one with a parameter-dependent non-integrable singularity at one point of the integration and the other absolutely integrable. A study is made of summability methods which are based on the expansion of the absolutely integrable function in a Taylor series with centre at the singular point (f.p.), on the analytic continuation with respect to the parameter of the singularity (a.f.p.), and on integration by parts (f.p.p.). Formulae of changes of variables in such integrals are presented.
Received: 29.10.2002
Bibliographic databases:
UDC: 517
MSC: 26B20, 42B20
Language: English
Original paper language: Russian
Citation: G. M. Vainikko, I. K. Lifanov, “Approaches to the summability of divergent multidimensional integrals”, Sb. Math., 194:8 (2003), 1137–1166
Citation in format AMSBIB
\Bibitem{VaiLif03}
\by G.~M.~Vainikko, I.~K.~Lifanov
\paper Approaches to the summability of divergent multidimensional integrals
\jour Sb. Math.
\yr 2003
\vol 194
\issue 8
\pages 1137--1166
\mathnet{http://mi.mathnet.ru/eng/sm760}
\crossref{https://doi.org/10.1070/SM2003v194n08ABEH000760}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2034531}
\zmath{https://zbmath.org/?q=an:1058.40003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000186261600012}
\elib{https://elibrary.ru/item.asp?id=13432456}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0344197654}
Linking options:
  • https://www.mathnet.ru/eng/sm760
  • https://doi.org/10.1070/SM2003v194n08ABEH000760
  • https://www.mathnet.ru/eng/sm/v194/i8/p25
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025