Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 6, Pages 785–800
DOI: https://doi.org/10.1070/SM2010v201n06ABEH004092
(Mi sm7655)
 

This article is cited in 13 scientific papers (total in 13 papers)

Refining virtual knot invariants by means of parity

D. M. Afanas'ev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In this work two new invariants of virtual links are constructed: the even Alexander polynomial and the even quandle. The general idea behind the construction is to split the classical crossings into two types, the even and the odd ones, and then define different operations at the crossings of different types. On the other hand, the proposed construction is a realization of the same idea using two closely related languages: the language of quandles and the language of Alexander polynomials.
Bibliography: 15 titles.
Keywords: knot, virtual knot, parity, Alexander polynomial, minimality, quandle.
Received: 18.11.2009
Bibliographic databases:
Document Type: Article
UDC: 515.162+519.1
MSC: 57M25, 57M27
Language: English
Original paper language: Russian
Citation: D. M. Afanas'ev, “Refining virtual knot invariants by means of parity”, Sb. Math., 201:6 (2010), 785–800
Citation in format AMSBIB
\Bibitem{Afa10}
\by D.~M.~Afanas'ev
\paper Refining virtual knot invariants by means of parity
\jour Sb. Math.
\yr 2010
\vol 201
\issue 6
\pages 785--800
\mathnet{http://mi.mathnet.ru/eng/sm7655}
\crossref{https://doi.org/10.1070/SM2010v201n06ABEH004092}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2682364}
\zmath{https://zbmath.org/?q=an:1214.57005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201..785A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281540800001}
\elib{https://elibrary.ru/item.asp?id=19066208}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958601359}
Linking options:
  • https://www.mathnet.ru/eng/sm7655
  • https://doi.org/10.1070/SM2010v201n06ABEH004092
  • https://www.mathnet.ru/eng/sm/v201/i6/p3
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:735
    Russian version PDF:263
    English version PDF:50
    References:113
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025