Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 5, Pages 649–663
DOI: https://doi.org/10.1070/SM2011v202n05ABEH004159
(Mi sm7743)
 

This article is cited in 11 scientific papers (total in 11 papers)

Boundary values of the Schwarzian derivative of a regular function

V. N. Dubinin

Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences
References:
Abstract: Regular functions $f$ in the half-plane $\operatorname{Im} z>0$ admitting an asymptotic expansion $f(z)=c_1z+c_2z^2+c_3z^3+\gamma(z)z^3$, where $c_1>0$, $\operatorname{Im} c_2=0$ and the angular limit $\angle\lim_{z\to0}\gamma(z)=0$, are considered. For various conditions on the function $f$ inequalities for the real part of the Schwarzian derivative $S_f(0)=6(c_3/c_1-c_2^2/c_1^2)$ are established. These inequalities complement and refine some known versions of Schwarz's lemma. The results obtained are close to the well-known Burns-Krantz rigidity theorem on regular self-maps and its generalizations due to Tauraso, Vlacci and Shoikhet.
Bibliography: 16 titles.
Keywords: Schwarzian derivative, Schwarz's lemma, regular function.
Received: 24.05.2010
Bibliographic databases:
Document Type: Article
UDC: 517.54
MSC: 30A04, 30A42
Language: English
Original paper language: Russian
Citation: V. N. Dubinin, “Boundary values of the Schwarzian derivative of a regular function”, Sb. Math., 202:5 (2011), 649–663
Citation in format AMSBIB
\Bibitem{Dub11}
\by V.~N.~Dubinin
\paper Boundary values of the Schwarzian derivative of a~regular function
\jour Sb. Math.
\yr 2011
\vol 202
\issue 5
\pages 649--663
\mathnet{http://mi.mathnet.ru/eng/sm7743}
\crossref{https://doi.org/10.1070/SM2011v202n05ABEH004159}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2841516}
\zmath{https://zbmath.org/?q=an:1246.30048}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202..649D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294703200002}
\elib{https://elibrary.ru/item.asp?id=19066275}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80051702870}
Linking options:
  • https://www.mathnet.ru/eng/sm7743
  • https://doi.org/10.1070/SM2011v202n05ABEH004159
  • https://www.mathnet.ru/eng/sm/v202/i5/p29
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025