Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 2, Pages 280–306
DOI: https://doi.org/10.1070/SM2013v204n02ABEH004301
(Mi sm8096)
 

This article is cited in 8 scientific papers (total in 8 papers)

Approximations of the operator exponential in a periodic diffusion problem with drift

S. E. Pastukhova

Moscow State Technical University of Radio-Engineering, Electronics, and Automation
References:
Abstract: A Cauchy problem for a parabolic diffusion equation with 1-periodic coefficients containing first order terms is studied. For the corresponding semigroup we construct approximations in the $L^2$-operator norm on sections $t=\mathrm{const}$ of order $O(t^{-m/2})$ as $t\to\infty$ for $ m=1$ or $m=2$. The spectral method based on the Bloch representation of an operator with periodic coefficients is used.
Bibliography: 25 titles.
Keywords: diffusion with drift, operator exponential, homogenization, spectral method, Bloch decomposition of functions.
Received: 18.12.2011 and 04.05.2012
Bibliographic databases:
Document Type: Article
UDC: 517.956.8
MSC: Primary 35B40; Secondary 35K15
Language: English
Original paper language: Russian
Citation: S. E. Pastukhova, “Approximations of the operator exponential in a periodic diffusion problem with drift”, Sb. Math., 204:2 (2013), 280–306
Citation in format AMSBIB
\Bibitem{Pas13}
\by S.~E.~Pastukhova
\paper Approximations of the operator exponential in a~periodic diffusion problem with drift
\jour Sb. Math.
\yr 2013
\vol 204
\issue 2
\pages 280--306
\mathnet{http://mi.mathnet.ru/eng/sm8096}
\crossref{https://doi.org/10.1070/SM2013v204n02ABEH004301}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3087101}
\zmath{https://zbmath.org/?q=an:06197065}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204..280P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317574500007}
\elib{https://elibrary.ru/item.asp?id=19066626}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876742394}
Linking options:
  • https://www.mathnet.ru/eng/sm8096
  • https://doi.org/10.1070/SM2013v204n02ABEH004301
  • https://www.mathnet.ru/eng/sm/v204/i2/p133
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025