Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 5, Pages 684–702
DOI: https://doi.org/10.1070/SM2014v205n05ABEH004394
(Mi sm8298)
 

This article is cited in 1 scientific paper (total in 1 paper)

The continuous spectrum and the effect of parametric resonance. The case of bounded operators

V. V. Skazkaab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
References:
Abstract: The paper is concerned with the Mathieu-type differential equation $u''=-A^2 u+\varepsilon B(t)u$ in a Hilbert space $H$. It is assumed that $A$ is a bounded self-adjoint operator which only has an absolutely continuous spectrum and $B(t)$ is almost periodic operator-valued function. Sufficient conditions are obtained under which the Cauchy problem for this equation is stable for small $\varepsilon$ and hence free of parametric resonance.
Bibliography: 10 titles.
Keywords: parametric resonance, continuous spectrum, stability.
Received: 08.11.2013
Bibliographic databases:
Document Type: Article
UDC: 517.928
MSC: 34D05, 47A10, 70K28
Language: English
Original paper language: Russian
Citation: V. V. Skazka, “The continuous spectrum and the effect of parametric resonance. The case of bounded operators”, Sb. Math., 205:5 (2014), 684–702
Citation in format AMSBIB
\Bibitem{Ska14}
\by V.~V.~Skazka
\paper The continuous spectrum and the effect of parametric resonance. The case of bounded operators
\jour Sb. Math.
\yr 2014
\vol 205
\issue 5
\pages 684--702
\mathnet{http://mi.mathnet.ru/eng/sm8298}
\crossref{https://doi.org/10.1070/SM2014v205n05ABEH004394}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3242633}
\zmath{https://zbmath.org/?q=an:06349847}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..684S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344080100005}
\elib{https://elibrary.ru/item.asp?id=21826623}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904975417}
Linking options:
  • https://www.mathnet.ru/eng/sm8298
  • https://doi.org/10.1070/SM2014v205n05ABEH004394
  • https://www.mathnet.ru/eng/sm/v205/i5/p77
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:684
    Russian version PDF:222
    English version PDF:52
    References:131
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025