Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 4, Pages 480–488
DOI: https://doi.org/10.1070/SM2015v206n04ABEH004466
(Mi sm8357)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the Dirichlet problem for a nonlinear elliptic equation

Yu. V. Egorov

Institute de Mathématique de Toulouse
References:
Abstract: We prove the existence of an infinite set of solutions to the Dirichlet problem for a nonlinear elliptic equation of the second order. Such a problem for a nonlinear elliptic equation with Laplace operator was studied earlier by Krasnosel'skii, Bahri, Berestycki, Lions, Rabinowitz, Struwe and others. We study the spectrum of this problem and prove the weak convergence to 0 of the sequence of normed eigenfunctions. Moreover, we obtain some estimates for the ‘Fourier coefficients’ of functions in $W^1_{p,0}(\Omega)$. This allows us to improve the preceding results.
Bibliography: 8 titles.
Keywords: nonlinear elliptic equation, Dirichlet problem, eigenfunctions.
Received: 10.03.2014 and 12.09.2014
Bibliographic databases:
Document Type: Article
UDC: 517.957
MSC: Primary 35J60; Secondary 35P30
Language: English
Original paper language: Russian
Citation: Yu. V. Egorov, “On the Dirichlet problem for a nonlinear elliptic equation”, Sb. Math., 206:4 (2015), 480–488
Citation in format AMSBIB
\Bibitem{Ego15}
\by Yu.~V.~Egorov
\paper On the Dirichlet problem for a~nonlinear elliptic equation
\jour Sb. Math.
\yr 2015
\vol 206
\issue 4
\pages 480--488
\mathnet{http://mi.mathnet.ru/eng/sm8357}
\crossref{https://doi.org/10.1070/SM2015v206n04ABEH004466}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3354982}
\zmath{https://zbmath.org/?q=an:1335.35061}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206..480E}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356313700001}
\elib{https://elibrary.ru/item.asp?id=23421621}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84931364478}
Linking options:
  • https://www.mathnet.ru/eng/sm8357
  • https://doi.org/10.1070/SM2015v206n04ABEH004466
  • https://www.mathnet.ru/eng/sm/v206/i4/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025