Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2004, Volume 195, Issue 12, Pages 1747–1756
DOI: https://doi.org/10.1070/SM2004v195n12ABEH000864
(Mi sm864)
 

A normalized family of representations of the group of motions of a Euclidean space and the inverse problem of the representation theory of this group

R. S. Ismagilova, Sh. Sh. Sultanovb

a N. E. Bauman Moscow State Technical University
b Nizhnevartovsk State Pedagogical University, Nizhnevartovsk, Russian Federation
References:
Abstract: There exists a well-known holomorphic family $\mathscr T^\lambda$ of representations of the isometry group of $\mathbb R$ such that $\mathscr T^{-\lambda}\sim\mathscr T^\lambda$ for $\lambda\ne0$. This paper presents a holomorphic family $V_R^{\lambda}$, $|\lambda|<R$, such that $V_R^\lambda\sim\mathscr T^\lambda$ and $V_R^{-\lambda}= V_R^\lambda$ for $\lambda\ne0$. It is used for the construction of (generally speaking, reducible) representations of a fairly general form.
Received: 24.02.2004
Bibliographic databases:
UDC: 512.547.212
MSC: 22E45, 22E30
Language: English
Original paper language: Russian
Citation: R. S. Ismagilov, Sh. Sh. Sultanov, “A normalized family of representations of the group of motions of a Euclidean space and the inverse problem of the representation theory of this group”, Sb. Math., 195:12 (2004), 1747–1756
Citation in format AMSBIB
\Bibitem{IsmSul04}
\by R.~S.~Ismagilov, Sh.~Sh.~Sultanov
\paper A~normalized family of representations of the group of motions of a~Euclidean space and the inverse problem of the representation theory of this group
\jour Sb. Math.
\yr 2004
\vol 195
\issue 12
\pages 1747--1756
\mathnet{http://mi.mathnet.ru/eng/sm864}
\crossref{https://doi.org/10.1070/SM2004v195n12ABEH000864}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2138480}
\zmath{https://zbmath.org/?q=an:1074.22004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000228585900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-17744375175}
Linking options:
  • https://www.mathnet.ru/eng/sm864
  • https://doi.org/10.1070/SM2004v195n12ABEH000864
  • https://www.mathnet.ru/eng/sm/v195/i12/p47
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025