Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 3, Pages 433–464
DOI: https://doi.org/10.1070/SM8670
(Mi sm8670)
 

This article is cited in 1 scientific paper (total in 1 paper)

Inequalities for exponential sums

T. Erdélyi

Department of Mathematics, Texas A&M University, College Station, TX, USA
References:
Abstract: We study the classes
\begin{gather*} {\mathscr E}_n:= \biggl\{f\colon f(t)=\sum_{j=1}^n{a_j e^{\lambda_jt}}, \ a_j, \lambda_j\in {\mathbb C} \biggr\}, \\ {\mathscr E}_n^+:= \biggl\{f\colon f(t)=\sum_{j=1}^n{a_j e^{\lambda_jt}}, \ a_j, \lambda_j\in {\mathbb C}, \ \operatorname{Re}(\lambda_j) \geqslant 0 \biggr\}, \\ {\mathscr E}_n^-:= \biggl\{f\colon f(t)=\sum_{j=1}^n{a_j e^{\lambda_jt}}, \ a_j, \lambda_j\in {\mathbb C}, \ \operatorname{Re}(\lambda_j)\leqslant 0 \biggr\}, \end{gather*}
and
$$ {\mathscr T}_n:= \biggl\{f\colon f(t)=\sum_{j=1}^n{a_j e^{i\lambda_jt}}, \ a_j\in {\mathbb C}, \ \lambda_1<\lambda_2<\dots<\lambda_n \biggr\}. $$
A highlight of this paper is the asymptotically sharp inequality
$$ |f(0)|\leqslant (1+\varepsilon_n)3n\|f(t)e^{-9nt/2}\|_{L_2[0,1]}, \qquad f\in {\mathscr T}_n , $$
where $\varepsilon_n$ converges to $0$ rapidly as $n$ tends to $\infty$. The inequality
$$ \sup_{0 \not \equiv f\in {\mathscr T}_n}{ \frac{|f(0)|}{\|f\|_{L_2{[0,1]}}}} \geqslant n $$
is also established. Our results improve an old result due to Halász and a recent result due to Kós. We prove several other related order-sharp results in this paper.
Bibliography: 33 titles.
Keywords: exponential sums, Nikol'skii-, Bernstein- and Markov-type inequalities, infinite-finite range inequalities.
Received: 09.02.2016 and 11.11.2016
Bibliographic databases:
Document Type: Article
UDC: 517.518.862
MSC: 11C08, 41A17
Language: English
Original paper language: Russian
Citation: T. Erdélyi, “Inequalities for exponential sums”, Sb. Math., 208:3 (2017), 433–464
Citation in format AMSBIB
\Bibitem{Erd17}
\by T.~Erd{\'e}lyi
\paper Inequalities for exponential sums
\jour Sb. Math.
\yr 2017
\vol 208
\issue 3
\pages 433--464
\mathnet{http://mi.mathnet.ru/eng/sm8670}
\crossref{https://doi.org/10.1070/SM8670}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3629080}
\zmath{https://zbmath.org/?q=an:1377.30004}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208..433E}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000401851300008}
\elib{https://elibrary.ru/item.asp?id=28405183}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020107666}
Linking options:
  • https://www.mathnet.ru/eng/sm8670
  • https://doi.org/10.1070/SM8670
  • https://www.mathnet.ru/eng/sm/v208/i3/p132
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025