Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 10, Pages 1363–1383
DOI: https://doi.org/10.1070/SM8720
(Mi sm8720)
 

This article is cited in 3 scientific papers (total in 3 papers)

Local Petrovskii lacunas close to parabolic singular points of the wavefronts of strictly hyperbolic partial differential equations

V. A. Vassilievab

a National Research University "Higher School of Economics" (HSE), Moscow
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: We enumerate the local Petrovskii lacunas (that is, the domains of local regularity of the principal fundamental solutions of strictly hyperbolic PDEs with constant coefficients in $\mathbb{R}^N$) close to parabolic singular points of their wavefronts (that is, at the points of types $P_8^1$, $P_8^2$, $\pm X_9$, $X_9^1$, $X_9^2$, $J_{10}^1$ and $J_{10}^3$). These points form the next most difficult family of classes in the natural classification of singular points after the so-called simple singularities $A_k$, $D_k$, $E_6$, $E_7$ and $E_8$, which have been investigated previously.
Also we present a computer program which counts the topologically distinct morsifications of critical points of smooth functions, and hence also the local components of the complement of a generic wavefront at its singular points.
Bibliography: 22 titles.
Keywords: wavefront, lacuna, hyperbolic operator, sharpness, morsification, Petrovskii cycle, Petrovskii criterion.
Funding agency Grant number
Russian Science Foundation 16-11-10316
Research was supported by a Russian Science Foundation grant (project no. 16-11-10316).
Received: 20.04.2016 and 30.06.2016
Bibliographic databases:
Document Type: Article
UDC: 517.955+515.16
MSC: Primary 35L30, 58G17; Secondary 38K40
Language: English
Original paper language: Russian
Citation: V. A. Vassiliev, “Local Petrovskii lacunas close to parabolic singular points of the wavefronts of strictly hyperbolic partial differential equations”, Sb. Math., 207:10 (2016), 1363–1383
Citation in format AMSBIB
\Bibitem{Vas16}
\by V.~A.~Vassiliev
\paper Local Petrovskii lacunas close to parabolic singular points of the wavefronts of~strictly hyperbolic partial differential equations
\jour Sb. Math.
\yr 2016
\vol 207
\issue 10
\pages 1363--1383
\mathnet{http://mi.mathnet.ru/eng/sm8720}
\crossref{https://doi.org/10.1070/SM8720}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3588969}
\zmath{https://zbmath.org/?q=an:1356.35014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1363V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391848500001}
\elib{https://elibrary.ru/item.asp?id=27350032}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85007453511}
Linking options:
  • https://www.mathnet.ru/eng/sm8720
  • https://doi.org/10.1070/SM8720
  • https://www.mathnet.ru/eng/sm/v207/i10/p4
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025