Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 10, Pages 1421–1448
DOI: https://doi.org/10.1070/SM8757
(Mi sm8757)
 

This article is cited in 2 scientific papers (total in 2 papers)

Coadjoint orbits in duals of Lie algebras with admissible ideals

A. M. Blocha, F. Gay-Balmazb, T. S. Ratiucd

a Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
b CNRS-LMD-IPSL, École Normale Supérieure de Paris, Paris, France
c Department of Mathematics, Shanghai Jiao Tong University, Shanghai, China
d Department of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
References:
Abstract: We analyze the symplectic structure of the coadjoint orbits of Lie groups with Lie algebras that contain admissible ideals. Such ideals were introduced by Pukanszky to investigate the global symplectic structure of simply connected coadjoint orbits of connected, simply connected, solvable Lie groups. Using the theory of symplectic reduction of cotangent bundles, we identify classes of coadjoint orbits which are vector bundles. This implies Pukanszky's earlier result that such orbits have a symplectic form which is the sum of the canonical form and a magnetic term.
This approach also allows us to provide many of the essential details of Pukanszky's result regarding the existence of global Darboux coordinates for the simply connected coadjoint orbits of connected, simply connected solvable Lie groups.
Bibliography: 26 titles.
Keywords: coadjoint orbits, solvable Lie groups, symplectic reduction, admissible ideals.
Funding agency Grant number
National Science Foundation INSPIRE-1363720
DMS-1207693
DMS-1613819
Simons Foundation
École Normale Supégrieure Projet Incitatif de Recherche
Agence Nationale de la Recherche GEOMFLUID, ANR-14-CE23-0002-01
Swiss National Science Foundation NCCR SwissMAP
200021-140238
A. M. Bloch's research was partially supported by the National Science Foundation (grants INSPIRE-1363720, DMS-1207693 and DMS-1613819) as well as the Simons Foundation. F. Gay-Balmaz's research was partially supported by the École Normale Supérieure (Paris) (contract “Projet Incitatif de Recherche”) and by the Agence Nationale de la Recherche (project GEOMFLUID, ANR-14-CE23-0002-01). T. S. Ratiu's research was partially supported by the Swiss National Science Foundation (NCCR SwissMAP and grant 200021-140238).
Received: 15.06.2016 and 16.10.2016
Bibliographic databases:
Document Type: Article
UDC: 512.812+512.813
MSC: Primary 53D20, 22E25; Secondary 53D05
Language: English
Original paper language: Russian
Citation: A. M. Bloch, F. Gay-Balmaz, T. S. Ratiu, “Coadjoint orbits in duals of Lie algebras with admissible ideals”, Sb. Math., 208:10 (2017), 1421–1448
Citation in format AMSBIB
\Bibitem{BloGayRat17}
\by A.~M.~Bloch, F.~Gay-Balmaz, T.~S.~Ratiu
\paper Coadjoint orbits in duals of Lie algebras with admissible ideals
\jour Sb. Math.
\yr 2017
\vol 208
\issue 10
\pages 1421--1448
\mathnet{http://mi.mathnet.ru/eng/sm8757}
\crossref{https://doi.org/10.1070/SM8757}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3706883}
\zmath{https://zbmath.org/?q=an:1402.53064}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208.1421B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418482500001}
\elib{https://elibrary.ru/item.asp?id=30512332}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039068481}
Linking options:
  • https://www.mathnet.ru/eng/sm8757
  • https://doi.org/10.1070/SM8757
  • https://www.mathnet.ru/eng/sm/v208/i10/p4
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025