Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 10, Pages 1503–1522
DOI: https://doi.org/10.1070/SM8769
(Mi sm8769)
 

This article is cited in 2 scientific papers (total in 2 papers)

Laplacians on smooth distributions

Yu. A. Kordyukov

Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
References:
Abstract: Let $M$ be a compact smooth manifold equipped with a positive smooth density $\mu$ and let $H$ be a smooth distribution endowed with a fibrewise inner product $g$. We define the Laplacian $\Delta_H$ associated with $(H,\mu,g)$ and prove that it gives rise to an unbounded self-adjoint operator in $L^2(M,\mu)$. Then, assuming that $H$ generates a singular foliation $\mathscr F$, we prove that, for any function $\varphi$ in the Schwartz space $\mathscr S(\mathbb R)$, the operator $\varphi(\Delta_H)$ is a smoothing operator in the scale of longitudinal Sobolev spaces associated with $\mathscr F$. The proofs are based on pseudodifferential calculus on singular foliations, which was developed by Androulidakis and Skandalis, and on subelliptic estimates for $\Delta_H$.
Bibliography: 35 titles.
Keywords: distribution, singular foliation, Laplacian, pseudodifferential calculus, hypoellipticity.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00312-а
This research was supported by the Russian Foundation for Basic Research (grant no. 16-01-00312-а).
Received: 26.06.2016 and 12.02.2017
Bibliographic databases:
Document Type: Article
UDC: 517.95+517.98
MSC: Primary 58J60, 35H10; Secondary 53C17, 58J40
Language: English
Original paper language: Russian
Citation: Yu. A. Kordyukov, “Laplacians on smooth distributions”, Sb. Math., 208:10 (2017), 1503–1522
Citation in format AMSBIB
\Bibitem{Kor17}
\by Yu.~A.~Kordyukov
\paper Laplacians on smooth distributions
\jour Sb. Math.
\yr 2017
\vol 208
\issue 10
\pages 1503--1522
\mathnet{http://mi.mathnet.ru/eng/sm8769}
\crossref{https://doi.org/10.1070/SM8769}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3706886}
\zmath{https://zbmath.org/?q=an:1384.58023}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208.1503K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418482500004}
\elib{https://elibrary.ru/item.asp?id=30512335}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039073989}
Linking options:
  • https://www.mathnet.ru/eng/sm8769
  • https://doi.org/10.1070/SM8769
  • https://www.mathnet.ru/eng/sm/v208/i10/p91
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:549
    Russian version PDF:54
    English version PDF:36
    References:74
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025