Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 12, Pages 1758–1783
DOI: https://doi.org/10.1070/SM8884
(Mi sm8884)
 

This article is cited in 2 scientific papers (total in 2 papers)

Tight space-noise tradeoffs in computing the ergodic measure

M. Bravermana, C. Rojasb, J. Schneidera

a Princeton University, Princeton, NJ, USA
b Universidad Andrés Bello, Santiago, Chile
References:
Abstract: In this paper we obtain tight bounds on the space-complexity of computing the ergodic measure of a low-dimensional discrete-time dynamical system affected by Gaussian noise. If the scale of the noise is $\varepsilon$, and the function describing the evolution of the system is not itself a source of computational complexity, then the density function of the ergodic measure can be approximated within precision $\delta$ in space polynomial in $\log 1/\varepsilon+\log\log 1/\delta$. We also show that this bound is tight up to polynomial factors.
In the course of showing the above, we prove a result of independent interest in space-bounded computation: namely, that it is possible to exponentiate an $(n\times n)$-matrix to an exponentially large power in space polylogarithmic in $n$.
Bibliography: 25 titles.
Keywords: dynamical systems, space-bounded computations.
Funding agency Grant number
National Science Foundation CCF-1149888
CCF-1525342
Packard Fellowship in Science and Engineering
Simons Collaboration on Algorithms and Geometry
Fondo Nacional de Desarrollo Científico y Tecnológico 1150222
Universidad Andrés Bello DI-782-15/R
CMM — Universidad de Chile Basal PFB-03
M. Braverman is supported in part by an NSF CAREER award (CCF-1149888), NSF CCF-1525342, a Packard Fellowship in Science and Engineering the Simons Collaboration on Algorithms and Geometry. C. Rojas was supported in part by projects Fondecyt 1150222, DI-782-15/R Universidad Andrés Bello and Basal PFB-03 CMM–Universidad de Chile.
Received: 15.12.2016 and 15.05.2017
Bibliographic databases:
Document Type: Article
UDC: 517.938+510.581
MSC: Primary 68Q05, 37C40; Secondary 03D15
Language: English
Original paper language: Russian
Citation: M. Braverman, C. Rojas, J. Schneider, “Tight space-noise tradeoffs in computing the ergodic measure”, Sb. Math., 208:12 (2017), 1758–1783
Citation in format AMSBIB
\Bibitem{BraRojSch17}
\by M.~Braverman, C.~Rojas, J.~Schneider
\paper Tight space-noise tradeoffs in computing the ergodic measure
\jour Sb. Math.
\yr 2017
\vol 208
\issue 12
\pages 1758--1783
\mathnet{http://mi.mathnet.ru/eng/sm8884}
\crossref{https://doi.org/10.1070/SM8884}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3733360}
\zmath{https://zbmath.org/?q=an:1390.68335}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208.1758B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425457000002}
\elib{https://elibrary.ru/item.asp?id=30738010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042643923}
Linking options:
  • https://www.mathnet.ru/eng/sm8884
  • https://doi.org/10.1070/SM8884
  • https://www.mathnet.ru/eng/sm/v208/i12/p42
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025