Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 4, Pages 606–624
DOI: https://doi.org/10.1070/SM8890
(Mi sm8890)
 

Equivalence of the trigonometric system and its perturbations in the spaces $L^p$ and $C$

A. M. Sedletskii

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: Let $B=B[-\pi,\pi]$ be any of the spaces $L^p(-\pi,\pi)$, $1\leq p<\infty$, $p\neq2$, and $C[-\pi,\pi]$, and let $B_a=B[-\pi+a,\pi+a]$, $a\in\mathbb R$. A number of necessary conditions and sufficient conditions for the ‘perturbed trigonometric system’ $e^{i(n+\alpha_n)t}$, $n\in\mathbb Z$, to be equivalent to the trigonometric system $e^{int}$, $n\in\mathbb Z$, in the space $B_a$ for any $a\in\mathbb R$ are obtained. In particular, it is shown that if $(\alpha_n)\in l^s$, where $1/s=|1/p-1/2|$, then this equivalence takes place, the exponent $s$ being sharp. This result is used to show that in $L^p(-\pi,\pi)$, $1<p<2$, there exist bases of exponentials which are not equivalent to the trigonometric basis.
The machinery of Fourier multipliers is used in the proofs.
Bibliography: 18 titles.
Keywords: equivalent systems of functions, basis, Fourier multiplier.
Funding agency Grant number
Lomonosov Moscow State University
This research was carried out with the financial support of Lomonosov Moscow State University (grant “Current problems in fundamental mathematics and mechanics”).
Received: 21.12.2016 and 02.09.2018
Bibliographic databases:
Document Type: Article
UDC: 517.982.254
MSC: 46B15
Language: English
Original paper language: Russian
Citation: A. M. Sedletskii, “Equivalence of the trigonometric system and its perturbations in the spaces $L^p$ and $C$”, Sb. Math., 210:4 (2019), 606–624
Citation in format AMSBIB
\Bibitem{Sed19}
\by A.~M.~Sedletskii
\paper Equivalence of the trigonometric system and its perturbations in the spaces $L^p$ and~$C$
\jour Sb. Math.
\yr 2019
\vol 210
\issue 4
\pages 606--624
\mathnet{http://mi.mathnet.ru/eng/sm8890}
\crossref{https://doi.org/10.1070/SM8890}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3942837}
\zmath{https://zbmath.org/?q=an:1425.46008}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210..606S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000471828000007}
\elib{https://elibrary.ru/item.asp?id=37180605}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071093284}
Linking options:
  • https://www.mathnet.ru/eng/sm8890
  • https://doi.org/10.1070/SM8890
  • https://www.mathnet.ru/eng/sm/v210/i4/p145
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025