Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 9, Pages 1257–1272
DOI: https://doi.org/10.1070/SM8936
(Mi sm8936)
 

This article is cited in 5 scientific papers (total in 5 papers)

New examples of Besicovitch transitive cylindrical cascades

A. V. Kochergin

Faculty of Economics, Lomonosov Moscow State University
References:
Abstract: New examples of transitive cylindrical cascades with discrete orbits (the Besicovitch property) are constructed. For each $\gamma\in(0,1)$ there exists a cylindrical cascade over a rotation of the circle, with a $\gamma$-Hölder continuous function, that has the Besicovitch property; furthermore, the Hausdorff dimension of the set of points on the circle which have discrete orbits is at least $1-\gamma$. This improves (by $\varepsilon$) an earlier estimate. In addition, an example of a cascade with discrete orbits such that the corresponding function satisfies the Hölder condition with each exponent $\gamma\in(0,1)$ is constructed.
Bibliography: 16 titles.
Keywords: transitive cylindrical cascade, discrete orbit, Hausdorff dimension.
Received: 07.03.2017 and 04.09.2017
Bibliographic databases:
Document Type: Article
UDC: 517.983
MSC: 37E30
Language: English
Original paper language: Russian
Citation: A. V. Kochergin, “New examples of Besicovitch transitive cylindrical cascades”, Sb. Math., 209:9 (2018), 1257–1272
Citation in format AMSBIB
\Bibitem{Koc18}
\by A.~V.~Kochergin
\paper New examples of Besicovitch transitive cylindrical cascades
\jour Sb. Math.
\yr 2018
\vol 209
\issue 9
\pages 1257--1272
\mathnet{http://mi.mathnet.ru/eng/sm8936}
\crossref{https://doi.org/10.1070/SM8936}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3849096}
\zmath{https://zbmath.org/?q=an:1408.37074}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209.1257K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000451202200001}
\elib{https://elibrary.ru/item.asp?id=35410228}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85057552214}
Linking options:
  • https://www.mathnet.ru/eng/sm8936
  • https://doi.org/10.1070/SM8936
  • https://www.mathnet.ru/eng/sm/v209/i9/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025