Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 12, Pages 1812–1826
DOI: https://doi.org/10.1070/SM8995
(Mi sm8995)
 

This article is cited in 7 scientific papers (total in 7 papers)

The existence of a two-dimensional bounded system with continual and coinciding spectra of frequencies and of wandering exponents

E. M. Shishlyannikov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A two-dimensional linear homogeneous differential system with continuous bounded coefficients is constructed so that the frequencies and wandering exponents of each of its nonzero solutions coincide with each other and the set of their values at different solutions (the spectrum) is some interval of the number line.
Bibliography: 12 titles.
Keywords: linear system, characteristic exponents, frequencies, wandering exponents, uniformly distributed sequence.
Received: 21.07.2017 and 14.07.2018
Bibliographic databases:
Document Type: Article
UDC: 517.926
MSC: 34C10, 34D08
Language: English
Original paper language: Russian
Citation: E. M. Shishlyannikov, “The existence of a two-dimensional bounded system with continual and coinciding spectra of frequencies and of wandering exponents”, Sb. Math., 209:12 (2018), 1812–1826
Citation in format AMSBIB
\Bibitem{Shi18}
\by E.~M.~Shishlyannikov
\paper The existence of a~two-dimensional bounded system with continual and coinciding spectra of frequencies and of wandering exponents
\jour Sb. Math.
\yr 2018
\vol 209
\issue 12
\pages 1812--1826
\mathnet{http://mi.mathnet.ru/eng/sm8995}
\crossref{https://doi.org/10.1070/SM8995}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3881804}
\zmath{https://zbmath.org/?q=an:1412.34057}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209.1812S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000458805100008}
\elib{https://elibrary.ru/item.asp?id=36448152}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062816306}
Linking options:
  • https://www.mathnet.ru/eng/sm8995
  • https://doi.org/10.1070/SM8995
  • https://www.mathnet.ru/eng/sm/v209/i12/p149
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:413
    Russian version PDF:42
    English version PDF:27
    References:71
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025