Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 10, Pages 1361–1379
DOI: https://doi.org/10.1070/SM9124
(Mi sm9124)
 

This article is cited in 3 scientific papers (total in 3 papers)

Some properties of embeddings of rearrangement invariant spaces

S. V. Astashkina, E. M. Semenovb

a Samara National Research University, Samara, Russia
b Voronezh State University, Voronezh, Russia
References:
Abstract: Let $E$ and $F$ be rearrangement invariant spaces on $[0,1]$, and let $E\subset F$. This embedding is said to be strict if the functions in the unit ball of the space $E$ have absolutely equicontinuous norms in $F$. For the main classes of rearrangement invariant spaces necessary and sufficient conditions are obtained for an embedding to be strict, and also the relationships this concept has with other properties of embeddings are studied, especially the property of disjoint strict singularity. In the final part of the paper, a characterization of the property of strict embedding in terms of interpolation spaces is obtained.
Bibliography: 23 titles.
Keywords: strict embedding, rearrangement invariant (symmetric) space, Lorentz space, Marcinkiewicz space, (disjointly) strictly singular embedding.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 1.470.2016/1.4
Russian Foundation for Basic Research 17-01-00138-а
18-01-00414-а
The work of S. V. Astashkin was carried out in the framework of the implementation of a State Assignment of the Ministry of Education and Science of the Russian Federation (project no. 1.470.2016/1.4) and was also supported by the Russian Foundation for Basic Research (grant no. 17-01-00138-a). The work of E. M. Semenov was supported by the Russian Foundation for Basic Research (grant nos. 17-01-00138-a and 18-01-00414-a).
Received: 12.04.2018 and 06.12.2018
Bibliographic databases:
Document Type: Article
UDC: 517.982.27
MSC: 46E30
Language: English
Original paper language: Russian
Citation: S. V. Astashkin, E. M. Semenov, “Some properties of embeddings of rearrangement invariant spaces”, Sb. Math., 210:10 (2019), 1361–1379
Citation in format AMSBIB
\Bibitem{AstSem19}
\by S.~V.~Astashkin, E.~M.~Semenov
\paper Some properties of embeddings of rearrangement invariant spaces
\jour Sb. Math.
\yr 2019
\vol 210
\issue 10
\pages 1361--1379
\mathnet{http://mi.mathnet.ru/eng/sm9124}
\crossref{https://doi.org/10.1070/SM9124}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4017586}
\zmath{https://zbmath.org/?q=an:1464.46027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210.1361A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000510717100002}
\elib{https://elibrary.ru/item.asp?id=43275989}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082498359}
Linking options:
  • https://www.mathnet.ru/eng/sm9124
  • https://doi.org/10.1070/SM9124
  • https://www.mathnet.ru/eng/sm/v210/i10/p17
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025