Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2022, Volume 213, Issue 4, Pages 466–475
DOI: https://doi.org/10.1070/SM9559
(Mi sm9559)
 

How many roots of a system of random Laurent polynomials are real?

B. Ya. Kazarnovskii

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia
References:
Abstract: We say that a zero of a Laurent polynomial that lies on the unit circle with centre $0\in\mathbb C$ is real. We also say that a Laurent polynomial that is real on this circle is real. In contrast with ordinary polynomials, it is known that for random real Laurent polynomials of increasing degree the average proportion of real roots tends to $1/\sqrt 3$ rather than to $0$. We show that this phenomenon of the asymptotically nonvanishing proportion of real roots also holds for systems of Laurent polynomials of several variables. The corresponding asymptotic formula is obtained in terms of the mixed volumes of certain convex compact sets determining the growth of the system of polynomials.
Bibliography: 11 titles.
Keywords: trigonometric polynomial, Laurent polynomial, proportion of real zeros, BKK theorem, mixed volume.
Received: 30.01.2021 and 21.12.2021
Published: 20.06.2022
Bibliographic databases:
Document Type: Article
MSC: Primary 14C17; Secondary 52A39
Language: English
Original paper language: Russian
Citation: B. Ya. Kazarnovskii, “How many roots of a system of random Laurent polynomials are real?”, Sb. Math., 213:4 (2022), 466–475
Citation in format AMSBIB
\Bibitem{Kaz22}
\by B.~Ya.~Kazarnovskii
\paper How many roots of a~system of random Laurent polynomials are real?
\jour Sb. Math.
\yr 2022
\vol 213
\issue 4
\pages 466--475
\mathnet{http://mi.mathnet.ru/eng/sm9559}
\crossref{https://doi.org/10.1070/SM9559}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4461439}
\zmath{https://zbmath.org/?q=an:1490.14012}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022SbMat.213..466K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000813330900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85133509187}
Linking options:
  • https://www.mathnet.ru/eng/sm9559
  • https://doi.org/10.1070/SM9559
  • https://www.mathnet.ru/eng/sm/v213/i4/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:571
    Russian version PDF:100
    English version PDF:272
    Russian version HTML:298
    References:107
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025