Abstract:
We present a new method of the evaluation of entropy, which is based on volume estimates for John–Löwner ellipsoids induced by the eigenfunctions of Laplace–Beltrami operator on compact homogeneous manifolds $\mathbb{M}^{d}$ of rank $1$. This approach gives the sharp orders of entropy in the situations where the known methods meet difficulties of fundamental nature. In particular, we calculate the sharp orders of the entropy of the Sobolev classes $W_{p}^{\gamma }(\mathbb{M}^{d})$, $\gamma>0$, in $L_{q}(\mathbb{M}^{d})$, $1 \leq q \leq p \leq \infty$.
Bibliography: 35 titles.
The notion of entropy was introduced by Kolmogorov [14]. Let $X$ and $Y$ be Banach spaces with unit balls $B_{X}$ and $B_{Y}$, respectively. For a compact set $A\subset Y$ we define the entropy number $e_{n}(A,Y)$ as the infimum of all $\varepsilon >0$ such that there exist $\{y_{k}\}_{k=1}^{2^{n-1}}\subset Y$ such that
$$
\begin{equation*}
e_{n}(A,Y)=\inf_{\varepsilon >0}\biggl\{ A\subset \bigcup_{k=1}^{2^{n-1}}(y_{k}+\varepsilon B_{Y}) \text{ for some } \{ y_{k}\}_{k=1}^{2^{n-1}}\subset Y\biggr\}.
\end{equation*}
\notag
$$
Let $v\colon X\to Y$ be a compact operator. Then the $n$th entropy number $e_{n}(v):=e_{n}(v\colon X\to Y)$ is the infimum over all positive $\varepsilon$ such that there exist $\{y_{k}\}_{k=1}^{2^{n-1}}\subset Y$ such that
The notion of entropy can be given in terms of cowidths. Let $(X,\|\cdot\|)$ be a Banach space with unit ball $B_{X}$, let $A\subset X$, let $Z$ be a coding set and $\Phi$ be a family of mappings $\phi \colon A\to Z$. Let
In particular, if $Z$ is the set of all $N$-point sets $\{x_{k}\}_{k=1}^{N}\subset X$ and $\Phi$ is the set of all maps $\phi\colon A\to \{x_{k}\}_{k=1}^{N}$, then $\mathrm{co}^{\Phi}(A,X)$ is called the entropy width $\varepsilon_{N}(A,X)$. If $N=2^{n-1}$, $n\in \mathbb{N}$, then
where $P_{n}$ ranges over all linear operators of rank at most $n$ that map $X$ into itself. Let $Y$ be a Banach space, $u\colon Y \to X$ be a compact linear operator, and let $A=uB_{Y}$. Assume that $f(m)\colon \mathbb{N}\to \mathbb{R}$ is a positive function increasing (or nondecreasing) monotonically for large $m\in \mathbb{N}$ and such that
In the present paper we investigate the entropy of sets of smooth functions induced by multiplier operators on compact globally symmetric connected spaces of rank $1$ (or two-point homogeneous spaces). A complete classification of the two-point homogeneous spaces $\mathbb{M}^{d}$, $\dim \mathbb{M}^{d}=d >1$, was presented in [35]. They are the real spheres $\mathbb{S}^{d}$, $d=2,3, \dots$, the real projective spaces $\mathrm{P}^{d}(\mathbb{R})$, $d=2,3, \dots$, the complex projective spaces $\mathrm{P}^{d}(\mathbb{C})$, $d=4,6, \dots$, the quaternion projective spaces $\mathrm{P}^{d}(\mathbb{H})$, $d=8,12,\dots$, and the Cayley elliptic plane $\mathrm{P}^{16}(\mathrm{Cay})$. For more information on this classification, see [5], [7], [11] and [12], for example. In § 2 we consider some properties of two-point homogeneous spaces which are important for our applications. In particular, we present formulae in closed form for the dimensions of direct sums of eigenspaces of Laplace–Beltrami operators.
Our analysis is based on a detailed study of convex origin-symmetric bodies $V$ in $\mathbb{R}^{n}$ induced by eigenfunctions of the Laplace–Beltrami operators on homogeneous manifolds. Namely, we establish estimates for the volumes of the John–Löwner ellipsoids $\mathcal{E}(V)$ (ellipsoids of maximum volume contained in $V$) to find order-sharp estimates for entropy numbers, since entropy is a natural analogue of volume in infinite-dimensional Banach spaces (see [31] and [33], for example). Observe that in the case of the trigonometric system (when $\phi_{k}(t)=(2\pi)^{-d/2}\exp (i\langle k,t\rangle)$, $k\in \mathbb{Z}^{d}$, $t\in\mathbb{T}^{d}$) the corresponding estimates were obtained in [13]. However, the possibilities of the method used there are essentially limited to the case of the trigonometric system on the torus. It is underlined in [33], Ch. 7, that even in the case of the trigonometric system the problem of estimating the corresponding volumes is highly nontrivial. In the case of two-point homogeneous spaces volume estimates are connected with a range of difficulties of fundamental nature in comparison with the torus. In particular, representations of shifts of trigonometric functions on the torus $\mathbb{T}^{d}$ (used in Lemma 2.1 in [13] to estimate the volumes of the corresponding John–Löwner ellipsoids) are very simple:
The situation changes completely in the case of two-point homogeneous spaces. In particular, even in the case of $\mathbb{S}^{2}$, after applying a rotation to a spherical harmonic of degree $k$, this rotated spherical harmonic can be expressed as a linear combination of the spherical harmonics $Y_{j}^{k}$ of degree $k$, with coefficients given by a fairly complicated Wigner $D$-matrix. The approach we present allows us to overcome this range of difficulties. Namely, in § 3, we find the entropy of the Sobolev classes $W_{p}^{\gamma }(\mathbb{M}^{d})$ in $L_{q}(\mathbb{M}^{d})$, that is, we show that
The last line follows from (1.2), (2.37) and (2.39). More precisely, put $f(n)=n^{\gamma/d}$ in (1.2). Then condition (1.1) is satisfied, and using an embedding we obtain
Note that in [25] we used a different approach, developed in the cycle of works [15]–[22] and [24]. Observe that the entropy numbers of Sobolev classes on the $N$-dimensional cube were considered in [1]. In the case of $\mathbb{T}^{d}$ order-sharp lower bounds for the entropy numbers in $L_{1}$ of the Sobolev classes $W^{\gamma}_{\infty}$ were obtained in [13]. Various volume estimates of origin-symmetric convex bodies associated with orthonormal systems on manifolds were established in [27].
In this article positive constants are mostly denoted by $C$. We do not carefully distinguish between different constants, neither do we try to find good estimates for them. The same character is used to denote different constants in different parts of the article. For easy notation we write $a_{n}\gg b_{n}$ for two sequences if $a_{n}\geqslant Cb_{n}$ for some $C>0$ and each $n\in \mathbb{N}$, and $a_{n}\asymp b_{n}$ if $C_{1}b_{n}\leqslant a_{n}\leqslant C_{2}b_{n}$ for all $n\in \mathbb{N}$ and some positive constants $C_{1}$ and $C_{2}$. In some cases the constant $C(d)$ can depend on the dimension $d$, which is always assumed to be fixed.
§ 2. Harmonic analysis
Let $\mathbb{M}^{d}$ be a two-point homogeneous Riemannian manifold. Each such manifold $\mathbb{M}^{d}$ can be represented as the orbit space of a certain subgroup $\mathcal{H}$ of the orthogonal group $\mathcal{G}$, that is, $\mathbb{M}^{d}=\mathcal{G}/\mathcal{H}$. Let $\pi \colon \mathcal{G}\to \mathcal{G}/\mathcal{H}$ be the natural projection and $\mathbf{e}$ be the identity element of $\mathcal{G}$. The point $\mathbf{o}=\pi(\mathbf{e})$, which is invariant under the action of the group $\mathcal{H}$, is called the pole of $\mathbb{M}^{d}$. On any manifold $\mathbb{M}^{d}$ under consideration a Riemannian metric $d(\,\cdot\,{,}\,\cdot\,)$, the invariant Haar measure $d\nu$ and an invariant differential operator of the second order $\Delta$, the Laplace–Beltrami operator, are defined.
Let $L_{p}=L_{p}(\mathbb{M}^{d},\nu)$ be the set of all $\nu$-measurable functions $\varphi \colon \mathbb{M}^{d}\to\mathbb{R}$ of finite norm $\|\varphi\|_{p}$ given by
Now, let $U_{p}=\{\varphi\mid \varphi \in L_{p},\ \|\varphi\|_{p}\leqslant 1\}$. In the local coordinates $x_{l}$, $1\leqslant l\leqslant d$, the Laplace–Beltrami operator $\Delta$ has the form (see [8])
Let $\mathbb{M}^{d}$ be the sphere $\mathbb{S}^{d}$, $d=2,3, \dots$, the complex projective space $\mathrm{P}^{d}(\mathbb{C})$, $d=4,6,\dots$, the quaternion projective space $\mathrm{P}^{d}(\mathbb{H})$, $d=8,12,\dots$, or the Cayley elliptic plane $\mathrm{P}^{16}(\mathrm{Cay})$. It is well known that the Laplace–Beltrami operator $\Delta$ is elliptic and self-adjoint, and its eigenvalues form a sequence $0\leqslant \theta_{0}\leqslant \theta_{1}\leqslant \cdots \leqslant \theta_{k}\leqslant \dots$ increasing monotonically to infinity. The corresponding eigenspaces $\mathrm{H}_{k}$, $k\geqslant 0$, are finite-dimensional, $d_{k}=\dim \mathrm{H}_{k}<\infty $, $k\geqslant 0$, and orthogonal. Similarly, in the case of the real projective spaces $\mathbb{M}^{d}=\mathrm{P}^{d}(\mathbb{R})$, $d=2,3,\dots$, we have $0\leqslant \theta_{0}\leqslant \theta_{2}\leqslant \cdots \leqslant \theta_{2k}\leqslant \cdots$ and the corresponding eigenspaces are $\mathrm{H}_{2k}$, $k \geqslant 0$.
The real Hilbert space $L_{2}$ with the usual inner product
has the decomposition $L_{2}=\bigoplus_{k=0}^{\infty}\mathrm{H}_{k}$ ($L_{2}=\bigoplus_{k=0}^{\infty}\mathrm{H}_{2k}$ in the case of $\mathrm{P}^{d}(\mathbb{R})$, $d=2,3,\dots$). Let $\{Y_{j}^{k}\}_{j=1}^{d_{k}}$ be some orthonormal basis of $\mathrm{H}_{k}$, $Y_{j}^{k}\colon \mathbb{M}^{d}\to \mathbb{R}$; then for any $\phi \in L_{1}$ we can construct a formal Fourier series:
Similarly, in the case of $\mathrm{P}^{d}(\mathbb{R})$, $d=2,3, \dots$, for each $\mathrm{H}_{2k}$ we have an orthonormal basis $\{Y_{j}^{2k}\}_{j=1}^{d_{2k}}$ and for any $\phi \in L_{1}$ we have a formal Fourier series
All manifolds $\mathbb{M}^{d}$ considered here carry closed geodesics of length $2L$, where $L$ is the diameter of the space $\mathcal{G}/\mathcal{H}$, that is, the maximum distance between two arbitrary points. Recall that a function on $\mathbb{M}^{d}=\mathcal{G}/\mathcal{H}$ is invariant under the left action of the group $\mathcal{H}$ on the manifold $\mathbb{M}^{d}$ if and only if it depends only on the distance between its argument and the pole $\mathbf{o}=\mathbf{e}\mathcal{H}$. A function $Z\colon \mathbb{M}^{d}=\mathcal{G}/\mathcal{H}\to \mathbb{R}$ is called $\mathcal{H}$-invariant or zonal if $Z(\mathrm{h}^{-1}\,\cdot\,)=Z(\,\cdot\,)$ for all $\mathrm{h}\in \mathcal{H}$. Since the distance between any point $x$ on $\mathbb{M}^{d}$ and the pole $\mathbf{o}$ is at most $L$, $\mathcal{H}$-invariant (zonal) functions $Z$ on $\mathbb{M}^{d}$ can be identified with univariate functions $\widetilde{Z}(\cos(2\lambda(\,\cdot\,)))\colon [0,L] \to \mathbb{R}$. More precisely, for each zonal function $Z$ on $\mathbb{M}^{d}$ we have a univariate function $\widetilde{Z}(\,\cdot\,)$, defined by
where $\lambda=\pi/(2L)$ for $\mathbb{S}^{d}$, $d=2,3,\dots$, $\mathrm{P}^{d}(\mathbb{C})$, $d=4,6,\dots$, $\mathrm{P}^{d}(\mathbb{H})$, $d=8,12,\dots $, or $\mathrm{P}^{16}(\mathrm{Cay})$. If $\mathbb{M}^{d}=\mathrm{P}^{d}(\mathbb{R})$, $d=2,3,\dots$, then $\lambda=\pi/(4L)$. If $\lambda=\pi/(2L)$ then $\widetilde{Z}(\,\cdot\,)\colon [-1,1] \to \mathbb{R}$, and if $\lambda=\pi/(4L)$, then $\widetilde{Z}(\,\cdot\,)\colon [0,1] \to \mathbb{R}$.
Denoting by $\theta$ the distance between an arbitrary point $x\in \mathbb{M}^{d}$ and $\mathbf{o}$ we introduce the geodesic system of the polar coordinates $(\theta,\mathbf{u})$, where $\mathbf{u}$ is the angular parameter. In this coordinate system the representation (2.1) of the Laplace–Beltrami operator splits into two parts: $\Delta=\Delta_{\theta}+\Delta_{\mathbf{u}}$, where $\Delta_{\theta}$ and $\Delta_{\mathbf{u}}$ are the radial and tangential parts of $\Delta$, respectively. The radial part $\Delta_{\theta}$ has the form
where $\mathrm{A}(\theta)$ is the area of a sphere of radius $\theta$ on $\mathcal{G}/\mathcal{H}$ [7]. The area $\mathrm{A}(\theta)$ can be calculated using the structure of the Lie algebras of $\mathcal{G}$ and $\mathcal{H}$:
Applying (2.3) and (2.4) we see that the radial part of the Laplace–Beltrami operator $\Delta_{\theta }$ can be represented (up to some multiplicative constant) in the form
From Lemma 2.1 we conclude that polynomial eigenfunctions of the operator $-\Delta_{t}$ defined by (2.7) are Jacobi polynomials $P_{k}^{(\alpha,\beta)}$, and eigenvalues are equal to $\theta_{k}=k(k+\alpha +\beta +1)$ (see [7], p. 178, for more details).
Consequently, $\mathcal{H}$-invariant or zonal polynomial functions $Z_{k}\in \mathrm{H}_{k}$ on $\mathbb{M}^{d}$, $k\geqslant 1$, $Z_{0}\equiv 1$, can be specified explicitly, since they are eigenfunctions of the Laplace–Beltrami operator.1[x]1Observe that $\theta_{2k-1}=0$ and $Z_{2k-1}\equiv 0$, $k\in \mathbb{N}$, in the case of $\mathrm{P}^{d}(\mathbb{R})$. Moreover, if $\widetilde{Z}_{k}(\cos (2\lambda (\,\cdot\,)))$ is the function induced on $[0,L]$ by $Z_{k}\in \mathrm{H}_{k}$, $k\geqslant 0$, then
where $\alpha$ and $\beta$ were specified above. For example, in the case of the sphere $\mathbb{S}^{d}$, $d=2,3,\dots$, we have $\sigma =0$ and $\rho =d-1$, so
Observe that the normalisation constant $C_{k}(\mathbb{M}^{d})$ in (2.10) should be such that (2.11) is satisfied.
We will need explicit formulae for $\dim \mathrm{H}_{k}$ and $\dim \bigoplus_{k=0}^{N}\mathrm{H}_{k}$ for our applications. First consider the case when $\mathbb{M}^{d}=\mathbb{S}^{d}$, $\mathrm{P}^{d}(\mathbb{C})$, $\mathrm{P}^{d}(\mathbb{H})$, $\mathrm{P}^{16}(\mathrm{Cay})$. Let $\widetilde{Z}(\cos 2\lambda\theta)$ be the function induced on $[0,L]$ by a zonal function $Z\colon \mathbb{M}^{d} \to \mathbb{R}$ as in (2.2). Since $A(\theta)d\theta$ is the measure induced on $[0,L]$ by the Haar measure $d\nu$ on $\mathbb{M}^{d}$, applying (2.4) we obtain
where $a$ is a positive constant and $\alpha$ and $\beta$ were defined in (2.8). Put $\widetilde{Z} \equiv 1$ in (2.12). Since $d\nu$ is normalised, we have
We will frequently use formula (2.12) in the text to reduce integration of zonal functions over $\mathbb{M}^{d}$ with respect to $d\nu$ to integration over $[-1,1]$ (or $[0,1]$ in the case of $\mathrm{P}^{d}(\mathbb{R})$) with respect to $(1-t)^{\alpha }(1+t)^{\beta }dt$. Recall that Jacobi polynomials $P_{k}^{(\alpha,\beta)}$, $\alpha >-1$ and $\beta >-1$, are orthogonal on $(-1,1)$ with weight
where we used (2.9) in the last equality. This way of normalisation is coming from the definition of Jacobi polynomials in terms of generating functions (see [32], for example). Comparing (2.10) and (2.11) we find that
The case of real projective spaces $\mathbb{M}^{d}=\mathrm{P}^{d}(\mathbb{R})$, $d=2,3,\dots$, is more difficult to handle. The spaces $\mathrm{P}^{d}(\mathbb{R})$ can be defined as cosets of the orthogonal group $\mathbf{O}(d+1)$:
Consequently, on the real projective spaces $\mathrm{P}^{d}(\mathbb{R})$ only polynomials of even degree appear, because, owing to the identification of antipodal points on
only the even-order polynomials $P_{2k}^{(\alpha,\beta)}$, $k=0,1,2,\dots$, can be lifted to functions on $\mathrm{P}^{d}(\mathbb{R})$. Hence the corresponding eigenspaces of the Laplace–Beltrami operator are $\mathrm{H}_{2k}$, $k\geqslant 0$.
Applying (2.5) and (2.8) we obtain $\alpha=\beta=(d-2)/{2}$. Let $Z_{2k}$, $k\in \mathbb{N}$, where $Z_{0}\equiv 1$, be the zonal function corresponding to the eigenvalue
Recall that for $k\in \mathbb{N}$ the polynomial $P_{2k}^{((d-2)/2,(d-2)/2)}$ is just a multiple of the Gegenbauer polynomial $P_{2k}^{((d-1)/2)}$. Applying the well-known formula for the Euler integral of the first kind
Let us give some comments on this point. The method of the proof of Theorem 2.1 allows us to obtain formulae for $\dim \mathrm{H}_{k}(\mathbb{M}^{d})$ and $\dim\bigoplus_{k=0}^{N}\mathrm{H}_{k}(\mathbb{M}^{d})$ in closed form, where $\mathbb{M}^{d}$ is a two-point homogeneous space. In the case of $\mathbb{S}^{d}$, $d \geqslant 2$, this result is well known for $\dim \mathrm{H}_{k}(\mathbb{S}^{d})$, $k \geqslant 0$. Observe that formula (2.20) was announced in [3] without proof. Here we give a complete proof of (2.20) and find $\dim \mathrm{H}_{k}(\mathbb{M}^{d})$ for all $\mathbb{M}^{d}$ under consideration. The formulae in closed form for $\dim \bigoplus_{k=0}^{N}\mathrm{H}_{k}(\mathbb{M}^{d})$ in Theorem 2.1 are new for all manifolds $\mathbb{M}^{d}$ under consideration in this article.
There are various approaches to the definition of smoothness via harmonic analysis. We introduce sets of smooth functions by using multiplier operators. This approach allows us to give a unified treatment to a wide range of sets of smooth functions [9]. Consider the case when $\mathbb{M}^{d}=\mathbb{S}^{d}$, $\mathrm{P}^{d}(\mathbb{C})$, $\mathrm{P}^{d}(\mathbb{H})$, $\mathrm{P}^{16}(\mathrm{Cay})$ first. Let $\varphi$ be an arbitrary function in $L_{p}$, $1\leqslant p\leqslant\infty$, with the formal Fourier expansion
and $\Lambda =\{\lambda (k),\,k\in \{0\} \cup \mathbb{N}\}$ be a sequence of real numbers. If for each $\varphi \in L_{p}$ there is a function $f=\Lambda \varphi \in L_{q}$ such that
then we say that the multiplier operator $\Lambda$ is of type $(p,q)$. Let $Z\!=\!\widetilde{Z}(\cos (2\lambda d(\mkern-1.5mu\,\cdot\,\mkern-1.5mu,x)))$ be a zonal integrable function on $\mathbb{M}^{d}$. For any $h\in L_{1}$ we define the convolution $g$ by
for each $h\in L_{1}$, that is, the convolution of a function $h\in L_{1}$ with a zonal function $Z\in L_{1}$ acts as the multiplier (diagonal) operator $\Lambda =\{\lambda (k),\,k\in \{0\}\cup\mathbb{N}\}$. For the convolution $g$ we have Young’s inequality
then $f = K \ast \varphi$. In particular, Sobolev classes $W_{p}^{\gamma}(\mathbb{M}^{d})$ on $\mathbb{M}^{d}$ are defined as sets of functions $f$ representable in the form
and let $\Lambda = \{\lambda(k),\,k \in \{0\} \cup \mathbb{N}\}$. We say that $\Lambda$ is of type $(p,q)$ if for each $\varphi \in L_{p}$ there exists a function $f \in L_{q}$ such that
We say that $f \in \Lambda U_{p}$ if $\lambda(0)=1$ and $\varphi \in U_{p}$ in (2.38). The Sobolev classes $W^{\gamma}_{p}(\mathbb{P}^{d}(\mathbb{R}))$, $\gamma>0$, are defined as sets of functions representable in the form
To prove our main results, Theorems 3.1 and 3.3, we need several lemmas.
Lemma 3.1. Let $\mathbb{M}^{d}=\mathbb{S}^{d}$, $\mathrm{P}^{d}(\mathbb{C})$, $\mathrm{P}^{d}(\mathbb{H})$, $\mathrm{P}^{16}(\mathrm{Cay})$. Then there exists a multiplier operator $\mathrm{P}$ such that $\mathrm{P}t_{N}=t_{N}$ for all $t_{N}\in \bigoplus_{k=0}^{N}\mathrm{H}_{k}$ and
If $\mathbb{M}^{d}=\mathrm{P}^{d}(\mathbb{R})$, then there exists a multiplier $\mathrm{P}$ such that $\mathrm{P}t_{2N}=t_{2N}$ for all $t_{2N}\in \bigoplus_{k=0}^{N}\mathrm{H}_{2k}$ and
Proof. We start with the case when $\mathbb{M}^{d}=\mathbb{S}^{d}$, $\mathrm{P}^{d}(\mathbb{C})$, $\mathrm{P}^{d}(\mathbb{H})$, $\mathrm{P}^{16}(\mathrm{Cay})$, that is, we establish (3.1). Consider the function
Finally, substituting (3.19) into (3.18) and repeating the proof in the case considered above (that is, for $\mathbb{M}^{d}=\mathbb{S}^{d}$, $\mathrm{P}^{d}(\mathbb{C})$, $\mathrm{P}^{d}(\mathbb{H})$, or $\mathrm{P}^{16}(\mathrm{Cay})$) we obtain (3.2). The lemma is proved.
Let $\mathbf{e}_{1},\dots,\mathbf{e}_{s}$ be the canonical basis in $\mathbb{R}^{s}$, let $\alpha =(\alpha_{1},\dots,\alpha_{s})\in \mathbb{R}^{s}$ and $\beta =(\beta_{1},\dots,\beta_{s})\in \mathbb{R}^{s}$, and let $\langle \alpha,\beta \rangle =\sum_{k=1}^{s}\alpha_{k}\beta_{k}$. Also, let $\|\alpha\|_{(2)}=\langle \alpha,\alpha \rangle^{1/2}$ be the Euclidean norm on $\mathbb{R}^{s}$, let $l_{2}^{s}=(\mathbb{R}^{s},\|\cdot\|_{(2)})$, and let $B_{(2)}^{s}=\{\alpha\in\mathbb{R}^{s}\mid \|\alpha\|_{(2)}\leqslant 1\}$ be the canonical unit ball in $\mathbb{R}^{s}$. The norm $\|\cdot\|_{l_{\infty}^{s}}$ in $l_{\infty}^{s}$ is defined as usual:
The unit ball in $l_{\infty }^{s}$ is the cube $Q_{s}=\{\alpha\in\mathbb{R}^{s}\mid |\alpha_{k}|\leqslant 1,\,1\leqslant k\leqslant s\}$. We denote by $\mathrm{Vol}_{s}$ the standard $s $-dimensional volume of subsets of $\mathbb{R}^{s}$. Let $V$ be a convex origin-symmetric (such that $V=-V$) body in $\mathbb{R}^{s}$. Fixing a norm $\|\cdot\|_{V}$ on $\mathbb{R}^{s}$ we denote by $E$ the Banach space $E=(\mathbb{R}^{s},\|\cdot\|_{V})$ with unit ball $V$. For a convex origin-symmetric body $V\subset \mathbb{R}^{s}$ we define the polar body $V^{\mathrm{o}}$ of $V$ by
Let $\{\xi_{k}\mid 1\leqslant k\leqslant s\} \subset L_{\infty}$ be a set of orthonormal functions, let $\Xi_{s}=\mathrm{lin}\{ \xi_{k}\mid {1\leqslant k\leqslant s}\}$, and let $\mathrm{K}$ be the coordinate isomorphism,
be the Rademacher functions. We say that a Banach space $X$ with unit ball $U_{X}$ is of Rademacher cotype $2$ if there exists a positive constant $C$ such that for any finite set $\{\varphi_{k}\in X,\,1\leqslant k\leqslant n\}$,
An analogue of the following statement was proposed by this author in [18].
Lemma 3.2. Let $\{ \xi_{k},\,1\leqslant k\leqslant s\}$ be a set of orthonormal functions on $\mathbb{M}^{d}$ such that $\|\xi_{k}\|_{\infty}\leqslant M$ for any $1\leqslant k\leqslant s$ and some $M>0$. Then
The inner John–Löwner (or John) ellipsoid $\mathcal{E}(V)$ associated with a convex body $V\subset \mathbb{R}^{s}$ is the $s$-dimensional ellipsoid of maximum volume contained in $V$. It is well known that for each convex origin-symmetric body $V$ the inner John–Löwner ellipsoid exists and is unique [10], [6]. Let $\mathcal{G}(l_{\infty }^{s})$ be the group of isometries of $l_{\infty}^{s}$. Since $\mathcal{E}(Q_{s})$ is unique and
which is valid for any origin-symmetric convex body $V$, we complete the proof.
Theorem 3.1. Let $\mathbb{M}^{d}=\mathbb{S}^{d}$, $\mathrm{P}^{d}(\mathbb{C})$, $\mathrm{P}^{d}(\mathbb{H})$, $\mathrm{P}^{16}(\mathrm{Cay})$. Then for any $N\in \mathbb{N}$ and $1\leqslant q\leqslant p\leqslant\infty$ we have
where $n=\dim \bigoplus_{k=0}^{N}\mathrm{H}_{2k}$.
Proof. We establish the lower bounds in (3.26). It is sufficient to consider only the case $p=\infty$, $q=1$, since all other cases follow by embedding. Let $\mathbb{M}^{d}$ be a two-point homogeneous Riemannian manifold. It is known (see Theorem 2.4 in [30] in the case of $\mathbb{S}^{d}$, $d=2,3,\dots$, $\mathrm{P}^{d}(\mathbb{R})$, $d=2,3,\dots$, $\mathrm{P}^{d}(\mathbb{C})$, $d=4,6,\dots$, or $\mathrm{P}^{d}(\mathbb{H})$, $d=8,12,\dots$, and see [29], p. 3, in the case of $\mathrm{P}^{16}(\mathrm{Cay})$) that for any $\varepsilon >0$ and $N\in \mathbb{N}$ there exists a set of orthonormal functions
$$
\begin{equation}
s\geqslant (1-\varepsilon) \dim \bigoplus_{k=0}^{N}\mathrm{H}_{k}=(1-\varepsilon) n
\end{equation}
\tag{3.28}
$$
and $\|\xi_{j}\|_{\infty }\leqslant C(\varepsilon)$, $1\leqslant j\leqslant s$, where $C(\varepsilon)$ depends only on $\varepsilon$. Let $\{x_{1},\dots,x_{N(\delta)}\}$, $N(\delta)\in \mathbb{N}$, $\delta >0$, be a maximal $\delta$-distinguishable net for $(B_{(\mathrm{K},1)}^{s})^{\mathrm{o}}$ in $\|\cdot \|_{(2)}$. Then
where $M=C(\varepsilon)$ depends only on $\varepsilon >0$. Let $\Xi^{\bot}(s)$ denote the orthogonal complement of $\Xi(s)$ in $L_{\infty}$. Then by duality (see, for example, [13])
which is a projection onto $\oplus_{m=0}^{N}\mathrm{H}_{m}$, that is, $\mathrm{P}x=x$, for all $x\in \bigoplus_{m=0}^{N}\mathrm{H}_{m}$. Since $\mathrm{K}x_{k}\in \bigoplus_{m=0}^{N}\mathrm{H}_{m}$, $1\leqslant k\leqslant N(\delta)$, using (3.31) we obtain
for any $1\leqslant k\neq l\leqslant N(\delta)$, since $\mathrm{K}x_{k}\in \Xi (s)\subset \bigoplus_{m=0}^{N}\mathrm{H}_{m}$ and $h_{k}\in \Xi^{\bot}(s)$. Consequently, applying (3.33) we see that
that form a $C\delta^{2}$-distinguishable net in $U_{\infty }\cap \bigoplus_{m=0}^{2N}\mathrm{H}_{m}$. Observe that $N(\delta)$ is bounded for any $\delta >0$ (since $U_{\infty }\cap \bigoplus_{m=0}^{2N}\mathrm{H}_{m}$ is finite dimensional and bounded in $L_{1}$) and increasing as $\delta\to0$. Given $n \in \mathbb{N}$, let $\delta$ be the smallest number such that $N(\delta) \leqslant 2^{n}$. Then applying (3.30) we find that
We will need the following statement (Theorem 2 in [3], p.317).
Theorem 3.2. Let $\Lambda=\{\lambda(k),\,k\in\{0\}\cup\mathbb{N}\}$ be a multiplier operator, $\Lambda \colon L_{p} \to L_{q}$, $1 \leqslant q \leqslant p \leqslant \infty$, and let
Observe that the proof of Theorem 3.2 in the case when $\mathbb{M}^{d}=P^{d}(\mathbb{M}^{d})$ is the same as in the case when $\mathbb{M}^{d}=\mathbb{S}^{d}$, $\mathrm{P}^{d}(\mathbb{C})$, $\mathrm{P}^{d}(\mathbb{H})$, $\mathrm{P}^{16}(\mathrm{Cay})$ and uses estimates (3.19) for the $L_{1}$-norms of Cesàro kernels.
The next statement gives us estimates for the entropy of multiplier operators in terms of $\{\lambda(k),\,k\in\{0\}\cup\mathbb{N}\}$.
Theorem 3.3. Let $\Lambda =\{\lambda(k),\,k \in \{0\} \cup \mathbb{N}\}$ be such that $\lambda (k)\neq 0$ for $k\geqslant 0$,
Proof. Consider the case when $\mathbb{M}^{d}=\mathbb{S}^{d}$, $\mathrm{P}^{d}(\mathbb{C})$, $\mathrm{P}^{d}(\mathbb{H})$, $\mathrm{P}^{16}(\mathrm{Cay})$. The proof in the case of $\mathrm{P}^{d}(\mathbb{R})$ is similar. We start with the upper bounds. It was shown in [3], p. 318, that if $\Lambda$ satisfies conditions (3.36) and (3.37), then
This implies that $\Lambda \colon L_{p}\longrightarrow L_{q}$ is compact. If $1\leqslant q\leqslant p\leqslant \infty$, then by embedding and the definition of linear widths we have
Since the $u_{N}$ form a nonincreasing sequence, the $u_{N}^{-1}$ are nondecreasing. Hence $f(n)$ in (1.2) is nondecreasing and satisfies condition (1.1). Applying (1.2) we obtain
$\theta_{k}=k(k+\alpha+\beta+1)$ and $\gamma >0$ for $\mathbb{M}^{d}=\mathbb{S}^{d}$, $\mathrm{P}^{d}(\mathbb{C})$, $\mathrm{P}^{d}(\mathbb{H})$, $\mathrm{P}^{16}(\mathrm{Cay})$ and
Proof. Let $\mathbb{M}^{d}=\mathbb{S}^{d}$, $\mathrm{P}^{d}(\mathbb{C})$, $\mathrm{P}^{d}(\mathbb{H})$, $\mathrm{P}^{16}(\mathrm{Cay})$. Observe that for $t>0$ we have
By Theorem 2.1, $n=\dim \bigoplus_{k=0}^{N}\mathrm{H}_{k}\asymp N^{d}$ for any $\mathbb{M}^{d}$ under consideration. Thus, applying Theorem 3.3 we obtain the proof for $\mathbb{M}^{d}=\mathbb{S}^{d}$, $\mathrm{P}^{d}(\mathbb{C})$, $\mathrm{P}^{d}(\mathbb{H})$, $\mathrm{P}^{16}(\mathrm{Cay})$. In the case of $\mathrm{P}^{d}(\mathbb{R})$ the proof is similar.
Bibliography
1.
M. Š. Birman and M. Z. Solomjak, “Piecewise-polynomial approximations of functions of the classes $W_p^\alpha$”, Sb. Math., 2:3 (1967), 295–317
2.
A. Bonami and J. L. Clerc, “Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques”, Trans. Amer. Math. Soc., 183 (1973), 223–263
3.
B. Bordin, A. K. Kushpel, J. Levesley and S. A. Tozoni, “Estimates of $n$-widths of Sobolev's classes on compact globally symmetric spaces of rank one”, J. Funct. Anal., 202:2 (2003), 307–326
4.
J. Bourgain and V. D. Milman, “New volume ratio properties for convex symmetric bodies in $\mathbb{R}^{n}$”, Invent. Math., 88:2 (1987), 319–340
5.
E. Cartan, “Sur la détermination d'un système orthogonal complet dans un espace de Riemann symétrique clos”, Rend. Circ. Mat. Palermo, 53 (1929), 217–252
6.
L. Danzer, D. Laugwitz and H. Lenz, “Über das Löwnersche Ellipsoid und sein Analogon unter den einem Eikörper einbeschriebenen Ellipsoiden”, Arch. Math. (Basel), 8 (1957), 214–219
7.
R. Gangolli, “Positive definite kernels on homogeneous spaces and certain stochastis processes related to Lévy's
Brownian motion of several parameters”, Ann. Inst. H. Poincaré Sect. B (N.S.), 3:2 (1967), 121–226
8.
E. Giné M., “The addition formula for the eigenfunctions of the Laplacian”, Adv. Math., 18:1 (1975), 102–107
9.
F. Jarad, A. Kushpel and K. Taş, “On the optimality of the trigonometric system”, J. Complexity, 56 (2020), 101429, 12 pp.
10.
F. John, “Extremum problems with inequalities as subsidiary conditions”, Studies and essays, Presented to R. Courant on his 60th birthday, Jan. 8, 1948, Intersci. Publ., New York, 1948, 187–204
11.
S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., 12, Academic Press, New York–London, 1962, xiv+486 pp.
12.
S. Helgason, “The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds”, Acta Math., 113 (1965), 153–180
13.
B. S. Kashin and V. N. Temlyakov, “On best $m$-term approximations and the entropy of sets in the space $L^1$”, Math. Notes, 56:5 (1994), 1137–1157
14.
A. N. Kolmogorov, “On certain asymptotic characteristics of completely bounded metric spaces”, Dokl. Akad. Nauk SSSR, 108 (1956), 385–388 (Russian)
15.
A. K. Kushpel, “Estimates of the widths of classes of analytic functions”, Ukrainian Math. J., 41:4 (1989), 493–496
16.
A. K. Kushpel, “Estimates of Lévy means and medians of some distributions on a sphere”, Fourier series and their applications (Kamenets-Podol'skiĭ 1992), Inst. Mat. AN Ukrainy, Kiev, 1992, 49–53 (Russian)
17.
A. K. Kushpel, “Estimates of the Bernstein widths and their analogs”, Ukrainian Math. J., 45:1 (1993), 59–65
18.
A. K. Kushpel, J. Levesley and K. Wilderotter, “On the asymptotically optimal rate of approximation of multiplier operators from $L_p$ into $L_q$”, Constr. Approx., 14:2 (1998), 169–185
19.
A. Kushpel, “Optimal cubature formulas on compact homogeneous manifolds”, J. Funct. Anal., 257:5 (2009), 1621–1629
20.
A. K. Kushpel, J. Levesley and S. A. Tozoni, “Estimates of $n$-widths of Besov classes on two-point homogeneous manifolds”, Math. Nachr., 282:5 (2009), 748–763
21.
A. Kushpel and S. A. Tozoni, “Entropy and widths of multiplier operators on two-point homogeneous spaces”, Constr. Approx., 35:2 (2012), 137–180
22.
A. Kushpel, R. L. B. Stabile and S. A. Tozoni, “Estimates for $n$-widths of sets of smooth functions on the torus $\mathbb{T}^{d}$”, J. Approx. Theory, 183 (2014), 45–71
23.
A. K. Kushpel, “On the Lebesgue constants”, Ukrainian Math. J., 71:8 (2020), 1224–1233
24.
A. Kushpel and K. Taş, “The radii of sections of origin-symmetric convex bodies and their applications”, J. Complexity, 62 (2021), 101504, 21 pp.
25.
A. Kushpel, K. Taş and J. Levesley, “Widths and entropy of sets of smooth functions on compact homogeneous manifolds”, Turkish J. Math., 45:1 (2021), 167–184
26.
A. Kushpel, “The Lebesgue constants on projective spaces”, Turkish J. Math., 45:2 (2021), 856–863
27.
A. Kushpel, “Optimal recovery and volume estimates”, J. Complexity, 79 (2023), 101780, 15 pp.
28.
J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp.
29.
J. Marzo and J. Ortega-Cerdà, Uniformly bounded orthonormal polynomials on the sphere, arXiv: 1405.5417v2
30.
J. Marzo and J. Ortega-Cerdà, “Uniformly bounded orthonormal polynomials on the sphere”, Bull. Lond. Math. Soc., 47:5 (2015), 883–891
31.
J. Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Math., 94, Cambridge Univ. Press, Cambridge, 1989, xiv+250 pp.
32.
G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., New York, 1939, ix+401 pp.
H. Triebel, “Relations between approximation numbers and entropy numbers”, J. Approx. Theory, 78:1 (1994), 112–116
35.
Hsien-Chung Wang, “Two-point homogeneous spaces”, Ann. of Math. (2), 55 (1952), 177–191
Citation:
A. K. Kushpel, “John–Löwner ellipsoids and entropy of multiplier operators on rank $1$ compact homogeneous manifolds”, Sb. Math., 216:2 (2025), 210–238