Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2001, Volume 42, Number 3, Pages 645–650 (Mi smj1449)  

Sufficient conditions for boundedness of convolution operators in rearrangement-invariant spaces

B. I. Peleshenko

Dnepropetrovsk State Agricultural University
Abstract: We prove equivalence of sufficient conditions for boundedness of convolution integral operators in rearrangement-invariant spaces which were obtained in the articles of S. G. Krein, E. M. Semenov, and the author. The first of these conditions generalizes the Hardy–Littlewood–Sobolev condition and the second is a modification of the Hörmander condition.
Received: 28.02.2000
English version:
Siberian Mathematical Journal, 2001, Volume 42, Issue 3, Pages 546–550
DOI: https://doi.org/10.1023/A:1010479327687
Bibliographic databases:
UDC: 517.948.5
Language: Russian
Citation: B. I. Peleshenko, “Sufficient conditions for boundedness of convolution operators in rearrangement-invariant spaces”, Sibirsk. Mat. Zh., 42:3 (2001), 645–650; Siberian Math. J., 42:3 (2001), 546–550
Citation in format AMSBIB
\Bibitem{Pel01}
\by B.~I.~Peleshenko
\paper Sufficient conditions for boundedness of convolution operators in rearrangement-invariant spaces
\jour Sibirsk. Mat. Zh.
\yr 2001
\vol 42
\issue 3
\pages 645--650
\mathnet{http://mi.mathnet.ru/smj1449}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1852241}
\zmath{https://zbmath.org/?q=an:0987.45005}
\transl
\jour Siberian Math. J.
\yr 2001
\vol 42
\issue 3
\pages 546--550
\crossref{https://doi.org/10.1023/A:1010479327687}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169277100012}
Linking options:
  • https://www.mathnet.ru/eng/smj1449
  • https://www.mathnet.ru/eng/smj/v42/i3/p645
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025