Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2008, Volume 49, Number 2, Pages 400–419 (Mi smj1849)  

This article is cited in 8 scientific papers (total in 8 papers)

Interpolation of operators of weak type $(\varphi,\varphi)$

B. I. Peleshenko

Dnepropetrovsk State Agricultural University
Full-text PDF (409 kB) Citations (8)
References:
Abstract: Considering the measurable and nonnegative functions $\varphi$ on the half-axis $[0,\infty)$ such that $\varphi(0)=0$ and $\varphi(t)\to\infty$ as $t\to\infty$, we study the operators of weak type $(\varphi,\varphi)$ that map the classes of $\varphi$-Lebesgue integrable functions to the space of Lebesgue measurable real functions on $\mathbb R^n$. We prove interpolation theorems for the subadditive operators of weak type $(\varphi_0,\varphi_0)$ bounded in $L_\infty(\mathbb R^n)$ and subadditive operators of weak types $(\varphi_0,\varphi_0)$ and $(\varphi_1,\varphi_1)$ in $L_\varphi(\mathbb R^n)$ under some assumptions on the nonnegative and increasing functions $\varphi(x)$ on $[0,\infty)$. We also obtain some interpolation theorems for the linear operators of weak type $(\varphi_0,\varphi_0)$ bounded from $L_\infty(\mathbb R^n)$ to $BMO(\mathbb R^n)$. For the restrictions of these operators to the set of characteristic functions of Lebesgue measurable sets, we establish some estimates for rearrangements of moduli of their values; deriving a consequence, we obtain a theorem on the boundedness of operators in rearrangement-invariant spaces.
Keywords: interpolation of operators, $\varphi$-integrable function, operator of weak type, rearrangement-invariant space, modular inequality.
Received: 19.05.2006
Revised: 29.12.2006
English version:
Siberian Mathematical Journal, 2008, Volume 49, Issue 2, Pages 322–338
DOI: https://doi.org/10.1007/s11202-008-0032-x
Bibliographic databases:
UDC: 517.948.5
Language: Russian
Citation: B. I. Peleshenko, “Interpolation of operators of weak type $(\varphi,\varphi)$”, Sibirsk. Mat. Zh., 49:2 (2008), 400–419; Siberian Math. J., 49:2 (2008), 322–338
Citation in format AMSBIB
\Bibitem{Pel08}
\by B.~I.~Peleshenko
\paper Interpolation of operators of weak type~$(\varphi,\varphi)$
\jour Sibirsk. Mat. Zh.
\yr 2008
\vol 49
\issue 2
\pages 400--419
\mathnet{http://mi.mathnet.ru/smj1849}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2419664}
\zmath{https://zbmath.org/?q=an:1164.46347}
\transl
\jour Siberian Math. J.
\yr 2008
\vol 49
\issue 2
\pages 322--338
\crossref{https://doi.org/10.1007/s11202-008-0032-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254860700013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43349094987}
Linking options:
  • https://www.mathnet.ru/eng/smj1849
  • https://www.mathnet.ru/eng/smj/v49/i2/p400
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025