Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2008, Volume 49, Number 4, Pages 756–767 (Mi smj1875)  

This article is cited in 7 scientific papers (total in 7 papers)

Necessary and sufficient well-posedness conditions for a convolution equation of the second kind with even kernel on a finite interval

A. F. Voronin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (316 kB) Citations (7)
References:
Abstract: We derive some necessary and sufficient conditions for the well-posedness of a convolution equation of the second kind with even kernel on a finite interval. In order to check these conditions it suffices to compute a one-dimensional integral (of a given function) with precision less than 0.5. As an intermediate result we give a strengthening of the Fredholm alternative for the equation in question with an arbitrary kernel in $L_1$.
Keywords: integral equation, convolution, interval, well-posedness, Fredholm alternative, Riemann problem.
Received: 13.04.2006
English version:
Siberian Mathematical Journal, 2008, Volume 49, Issue 4, Pages 601–611
DOI: https://doi.org/10.1007/s11202-008-0057-1
Bibliographic databases:
UDC: 517.968
Language: Russian
Citation: A. F. Voronin, “Necessary and sufficient well-posedness conditions for a convolution equation of the second kind with even kernel on a finite interval”, Sibirsk. Mat. Zh., 49:4 (2008), 756–767; Siberian Math. J., 49:4 (2008), 601–611
Citation in format AMSBIB
\Bibitem{Vor08}
\by A.~F.~Voronin
\paper Necessary and sufficient well-posedness conditions for a~convolution equation of the second kind with even kernel on a~finite interval
\jour Sibirsk. Mat. Zh.
\yr 2008
\vol 49
\issue 4
\pages 756--767
\mathnet{http://mi.mathnet.ru/smj1875}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2456688}
\zmath{https://zbmath.org/?q=an:1164.45302}
\transl
\jour Siberian Math. J.
\yr 2008
\vol 49
\issue 4
\pages 601--611
\crossref{https://doi.org/10.1007/s11202-008-0057-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000258913200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51549101002}
Linking options:
  • https://www.mathnet.ru/eng/smj1875
  • https://www.mathnet.ru/eng/smj/v49/i4/p756
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025