Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2013, Volume 54, Number 5, Pages 972–988 (Mi smj2470)  

This article is cited in 1 scientific paper (total in 1 paper)

Generalized normal homogeneous spheres $S^{4n+3}$ with greatest connected motion group $Sp(n+1)\cdot U(1)$

V. N. Berestovskiĭ

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Omsk, Russia
Full-text PDF (387 kB) Citations (1)
References:
Abstract: We find all (new) $\delta$-homogeneous invariant Riemannian metrics (including the metrics that are not normal homogeneous) on the spheres of dimensions $4n+3$, $n\ge1$, with the greatest Lie group of isometries equal to $Sp(n+1)\times U(1)$ and all homogeneous (non-simply-connected) lens spaces covered by them. All $\delta$-homogeneous Riemannian spaces considered here have positive sectional curvatures and zero Euler characteristic. The answers are found to some previously posed questions.
Keywords: geodesic orbit space, geodesic vector, $\delta$-homogeneous space, $\delta$-vector, sphere, naturally reductive space, (generalized) normal homogeneous Riemannian space, homogeneous Riemannian fibration, Riemannian submersion, division ring of quaternions, Euler characteristic.
Received: 20.09.2012
English version:
Siberian Mathematical Journal, 2013, Volume 54, Issue 5, Pages 776–789
DOI: https://doi.org/10.1134/S0037446613050029
Bibliographic databases:
Document Type: Article
UDC: 514.70
Language: Russian
Citation: V. N. Berestovskiǐ, “Generalized normal homogeneous spheres $S^{4n+3}$ with greatest connected motion group $Sp(n+1)\cdot U(1)$”, Sibirsk. Mat. Zh., 54:5 (2013), 972–988; Siberian Math. J., 54:5 (2013), 776–789
Citation in format AMSBIB
\Bibitem{Ber13}
\by V.~N.~Berestovski{\v\i}
\paper Generalized normal homogeneous spheres $S^{4n+3}$ with greatest connected motion group $Sp(n+1)\cdot U(1)$
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 5
\pages 972--988
\mathnet{http://mi.mathnet.ru/smj2470}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3154795}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 5
\pages 776--789
\crossref{https://doi.org/10.1134/S0037446613050029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326118800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84886606980}
Linking options:
  • https://www.mathnet.ru/eng/smj2470
  • https://www.mathnet.ru/eng/smj/v54/i5/p972
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025