Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 1, Pages 111–121 (Mi smj2625)  

This article is cited in 11 scientific papers (total in 11 papers)

Solvability of the Cauchy problem for a polynomial difference operator and monomial bases for the quotients of a polynomial ring

E. K. Leĭnartas, M. S. Rogozina

Siberian Federal University, Krasnoyarsk, Russia
References:
Abstract: We find solvability conditions for a Cauchy problem with a polynomial difference operator and, in particular, give an easy-to-check sufficient condition in terms of the coefficients of the principal symbol of the difference operator. The solvability of the Cauchy problem is shown to be equivalent to the existence of a monomial basis in the quotient ring of the polynomial ring by the ideal generated by the characteristic polynomial.
Keywords: polynomial difference operator, Cauchy problem, monomial basis for the quotient ring.
Received: 03.06.2014
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 1, Pages 92–100
DOI: https://doi.org/10.1134/S0037446615010097
Bibliographic databases:
Document Type: Article
UDC: 517.55+519.111.1
Language: Russian
Citation: E. K. Leǐnartas, M. S. Rogozina, “Solvability of the Cauchy problem for a polynomial difference operator and monomial bases for the quotients of a polynomial ring”, Sibirsk. Mat. Zh., 56:1 (2015), 111–121; Siberian Math. J., 56:1 (2015), 92–100
Citation in format AMSBIB
\Bibitem{LeiRog15}
\by E.~K.~Le{\v\i}nartas, M.~S.~Rogozina
\paper Solvability of the Cauchy problem for a~polynomial difference operator and monomial bases for the quotients of a~polynomial ring
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 1
\pages 111--121
\mathnet{http://mi.mathnet.ru/smj2625}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3407943}
\elib{https://elibrary.ru/item.asp?id=23112826}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 1
\pages 92--100
\crossref{https://doi.org/10.1134/S0037446615010097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350510300009}
\elib{https://elibrary.ru/item.asp?id=24027225}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928792995}
Linking options:
  • https://www.mathnet.ru/eng/smj2625
  • https://www.mathnet.ru/eng/smj/v56/i1/p111
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025