Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2016, Volume 57, Number 6, Pages 1382–1388
DOI: https://doi.org/10.17377/smzh.2016.57.615
(Mi smj2831)
 

This article is cited in 1 scientific paper (total in 1 paper)

An extendability condition for bilipschitz functions

D. A. Trotsenkoab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (276 kB) Citations (1)
References:
Abstract: We give a new definition of $\lambda$-relatively connected set, some generalization of a uniformly perfect set. This definition is equivalent to the old definition for large $\lambda$ but makes it possible to obtain stable properties for small $\lambda$. We prove the $\lambda$-relative connectedness of Cantor sets for corresponding $\lambda$. The main result is as follows: $A\subset\mathbb R$ admits the extension of all $M$-bilipschitz functions $f\colon A\to\mathbb R$ to $M$-bilipschitz functions $F\colon\mathbb R\to\mathbb R$ if and only if $A$ is $\lambda$-relatively connected. We give exact estimates of the dependence of $M$ and $\lambda$.
Keywords: bilipschitz mapping, extension of a mapping.
Received: 24.01.2016
English version:
Siberian Mathematical Journal, 2016, Volume 57, Issue 6, Pages 1082–1087
DOI: https://doi.org/10.1134/S003744661606015X
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: D. A. Trotsenko, “An extendability condition for bilipschitz functions”, Sibirsk. Mat. Zh., 57:6 (2016), 1382–1388; Siberian Math. J., 57:6 (2016), 1082–1087
Citation in format AMSBIB
\Bibitem{Tro16}
\by D.~A.~Trotsenko
\paper An extendability condition for bilipschitz functions
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 6
\pages 1382--1388
\mathnet{http://mi.mathnet.ru/smj2831}
\crossref{https://doi.org/10.17377/smzh.2016.57.615}
\elib{https://elibrary.ru/item.asp?id=27380126}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 6
\pages 1082--1087
\crossref{https://doi.org/10.1134/S003744661606015X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391768100015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85007028714}
Linking options:
  • https://www.mathnet.ru/eng/smj2831
  • https://www.mathnet.ru/eng/smj/v57/i6/p1382
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025