Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2020, Volume 61, Number 2, Pages 239–254
DOI: https://doi.org/10.33048/smzh.2020.61.201
(Mi smj5978)
 

Rings whose every right ideal is a finite direct sum of automorphism-invariant right ideals

A. N. Abyzova, T. H. Phanb, C. Q. Truongc

a Kazan (Volga Region) Federal University
b Ton Duc Thang University, Ho Chi Minh City, Vietnam
c The University of Danang
References:
Abstract: We study the rings $R$ whose every right ideal is a finite direct sum of automorphism-invariant right $R$-modules. These rings are called right $\Sigma$-$a$-rings. We find a representation in the form of block upper triangular rings of formal matrices for the indecomposable right Artinian right hereditary right $\Sigma$-$a$-rings.
Keywords: automorphism-invariant module, $\Sigma$-$a$-ring, regular ring, hereditary Artinian ring, serial ring.
Funding agency Grant number
National Foundation for Science and Technology Development Vietnam 101.04-2017.22
Russian Foundation for Basic Research 18-41-160024
C. Q. Truong and T. H. Phan were supported by the Vietnam National Foundation for Science and Technology Development (Grant 101.04-2017.22). A. N. Abyzov was supported by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan (Grant 18–41–160024).
Received: 03.08.2019
Revised: 12.09.2019
Accepted: 18.10.2019
English version:
Siberian Mathematical Journal, 2020, Volume 61, Issue 2, Pages 187–198
DOI: https://doi.org/10.1134/S0037446620020019
Bibliographic databases:
Document Type: Article
UDC: 512.55
MSC: 35R30
Language: Russian
Citation: A. N. Abyzov, T. H. Phan, C. Q. Truong, “Rings whose every right ideal is a finite direct sum of automorphism-invariant right ideals”, Sibirsk. Mat. Zh., 61:2 (2020), 239–254; Siberian Math. J., 61:2 (2020), 187–198
Citation in format AMSBIB
\Bibitem{AbyPhaTru20}
\by A.~N.~Abyzov, T.~H.~Phan, C.~Q.~Truong
\paper Rings whose every right ideal is a~ finite direct sum of automorphism-invariant right ideals
\jour Sibirsk. Mat. Zh.
\yr 2020
\vol 61
\issue 2
\pages 239--254
\mathnet{http://mi.mathnet.ru/smj5978}
\crossref{https://doi.org/10.33048/smzh.2020.61.201}
\elib{https://elibrary.ru/item.asp?id=43290040}
\transl
\jour Siberian Math. J.
\yr 2020
\vol 61
\issue 2
\pages 187--198
\crossref{https://doi.org/10.1134/S0037446620020019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000540148100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086405860}
Linking options:
  • https://www.mathnet.ru/eng/smj5978
  • https://www.mathnet.ru/eng/smj/v61/i2/p239
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025