|
This article is cited in 6 scientific papers (total in 6 papers)
On the right-symmetric algebras with a unital matrix subalgebra
A. P. Pozhidaevab, I. P. Shestakovca a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Departamento de Matemática, Universidade de São Paulo, São Paulo, Brasil
Abstract:
Under study are the right-symmetric algebras over a field $F$
which possess a “unital” matrix subalgebra $M_n(F)$.
We classify all these finite-dimensional right-symmetric algebras $\mathcal{A}=W\oplus M_2(F)$ in the case when $W$ is an
irreducible module over $sl_2(F)$.
Keywords:
right-symmetric algebra, left-symmetric algebra, simple algebra, Koszul–Vinberg algebra, pre-Lie algebra.
Received: 18.05.2020 Revised: 14.09.2020 Accepted: 09.10.2020
Citation:
A. P. Pozhidaev, I. P. Shestakov, “On the right-symmetric algebras with a unital matrix subalgebra”, Sibirsk. Mat. Zh., 62:1 (2021), 173–184; Siberian Math. J., 62:1 (2021), 138–147
Linking options:
https://www.mathnet.ru/eng/smj7547 https://www.mathnet.ru/eng/smj/v62/i1/p173
|
| Statistics & downloads: |
| Abstract page: | 346 | | Full-text PDF : | 102 | | References: | 66 | | First page: | 5 |
|