|
Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 1, Pages 123–144 DOI: https://doi.org/10.33048/smzh.2022.63.109
(Mi smj7646)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Erased Kantorovich spaces
A. G. Kusraevab, S. S. Kutateladzec a Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz
b Vladikavkaz Scientific Centre of the Russian Academy of Sciences
c Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
DOI:
https://doi.org/10.33048/smzh.2022.63.109
Abstract:
An erased Kantorovich space is the lattice ordered additive group of a Kantorovich space. We study the special role of erased Kantorovich spaces in extending positive, dominated, and lattice homomorphisms and also the existence of unbounded polar-preserving group homomorphisms. Our method of study is Boolean-valued analysis.
Keywords:
Boolean-valued analysis, Kantorovich space, Wickstead problem, Gordon's Theorem, ordered group, homomorphism, extension property.
Received: 21.11.2021 Revised: 21.11.2021 Accepted: 10.12.2021
Citation:
A. G. Kusraev, S. S. Kutateladze, “Erased Kantorovich spaces”, Sibirsk. Mat. Zh., 63:1 (2022), 123–144; Siberian Math. J., 63:1 (2022), 102–118
Linking options:
https://www.mathnet.ru/eng/smj7646 https://www.mathnet.ru/eng/smj/v63/i1/p123
|
|