|
Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 2, Pages 334–343 DOI: https://doi.org/10.33048/smzh.2022.63.206
(Mi smj7660)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On discrete universality in the Selberg–Steuding class
R. Kacinskaite Vytautas Magnus University, Kaunas
DOI:
https://doi.org/10.33048/smzh.2022.63.206
Abstract:
Let $\mathcal{S}$ be the class of Dirichlet series introduced by Selberg and modified by Steuding, and let $\{\gamma_k: k \in {{\Bbb N}} \}$ be the sequence of the imaginary parts of the nontrivial zeros of the Riemann zeta-function. Using the modified Montgomery's pair correlation conjecture, we prove a universality theorem for a function $L(s)$ in $\mathcal{S}$ on approximation of analytic functions by the shifts $L(s+ih\gamma_k)$, $h>0$.
Keywords:
Selberg class, nontrivial zeros of the Riemann zeta-function, universality.
Received: 01.08.2021 Revised: 28.08.2021 Accepted: 11.10.2021
Citation:
R. Kacinskaite, “On discrete universality in the Selberg–Steuding class”, Sibirsk. Mat. Zh., 63:2 (2022), 334–343; Siberian Math. J., 63:2 (2022), 277–285
Linking options:
https://www.mathnet.ru/eng/smj7660 https://www.mathnet.ru/eng/smj/v63/i2/p334
|
|