|
Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 2, Pages 391–402 DOI: https://doi.org/10.33048/smzh.2022.63.210
(Mi smj7664)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On nonconstant pre-Lie bimodules over $M_2(F)$
A. P. Pozhidaev Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
DOI:
https://doi.org/10.33048/smzh.2022.63.210
Abstract:
We describe the unital finite-dimensional simple nonconstant bimodules $\mathcal{W}$ over the matrix algebra $M_2(F)$ over a field $F$ of characteristic $0$; i.e., the left action of the idempotents of $M_2(F)$ is diagonalizable and $\mathcal{W}$ does not contain constant bichains. Also, we construct an example of a nondiagonal bimodule and a series of constant right-symmetric bimodules over $M_2(F)$.
Keywords:
right-symmetric algebra, left-symmetric algebra, irreducible bimodule, simple algebra, pre-Lie algebra.
Received: 10.09.2021 Revised: 10.09.2021 Accepted: 10.12.2021
Citation:
A. P. Pozhidaev, “On nonconstant pre-Lie bimodules over $M_2(F)$”, Sibirsk. Mat. Zh., 63:2 (2022), 391–402; Siberian Math. J., 63:2 (2022), 326–335
Linking options:
https://www.mathnet.ru/eng/smj7664 https://www.mathnet.ru/eng/smj/v63/i2/p391
|
|