|
Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 4, Pages 768–782 DOI: https://doi.org/10.33048/smzh.2022.63.404
(Mi smj7691)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Rota–Baxter operators on the simple Jordan superalgebra $D_t$
T. A. Bolotinaa, V. Yu. Gubarevba a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
DOI:
https://doi.org/10.33048/smzh.2022.63.404
Abstract:
Up to conjugation by an automorphism, we describe the Rota–Baxter operators of weight zero or nonzero on the simple four-dimensional Jordan superalgebra $D_t$ over an algebraically closed field of characteristic $0$. The description includes the classification of all decompositions of $D_t$ into a direct sum of two subalgebras.
Keywords:
Rota–Baxter operators, Jordan superalgebra, decomposition into a sum of subalgebras.
Received: 21.09.2021 Revised: 17.02.2022 Accepted: 15.04.2022
Citation:
T. A. Bolotina, V. Yu. Gubarev, “Rota–Baxter operators on the simple Jordan superalgebra $D_t$”, Sibirsk. Mat. Zh., 63:4 (2022), 768–782; Siberian Math. J., 63:4 (2022), 637–650
Linking options:
https://www.mathnet.ru/eng/smj7691 https://www.mathnet.ru/eng/smj/v63/i4/p768
|
|