|
Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 6, Pages 1334–1348 DOI: https://doi.org/10.33048/smzh.2022.63.613
(Mi smj7735)
|
|
|
|
Some generalized Besov-type space $b_{p\theta}^{\varphi}([0,1];h)$ with the Haar basis
E. S. Smailov Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan, Almaty
DOI:
https://doi.org/10.33048/smzh.2022.63.613
Abstract:
We introduce the generalized Besov-type space $ B_{p\theta}^{\varphi}([0,1];H)$ over the Haar basis. We give the two-sided estimate for the norm of functions of the space in terms of their Fourier–Haar coefficients. Also, we establish a criterion for the embedding $B_{p\theta}^{\varphi}([0,1];H) \hookrightarrow L_{q\tau}[0,1]$ and some two-sided estimate for the approximation of $B^{\varphi}_{p\theta}([0,1],H)$ in the metric of $L_{q\tau}[0,1]$, with $1\leq p<q<+\infty$ and ${1\leq\tau<+\infty}$.
Keywords:
Besov space, Fourier–Haar series, best approximation, Fourier–Haar coefficients, embedding theorem, approximation.
Received: 15.12.2021 Revised: 12.07.2022 Accepted: 15.08.2022
Citation:
E. S. Smailov, “Some generalized Besov-type space $b_{p\theta}^{\varphi}([0,1];h)$ with the Haar basis”, Sibirsk. Mat. Zh., 63:6 (2022), 1334–1348; Siberian Math. J., 63:6 (2022), 1140–1152
Linking options:
https://www.mathnet.ru/eng/smj7735 https://www.mathnet.ru/eng/smj/v63/i6/p1334
|
|