Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 6, Pages 1369–1381
DOI: https://doi.org/10.33048/smzh.2022.63.615
(Mi smj7737)
 

The $g$-convergence of maximal monotone Nemytskii operators

A. A. Tolstonogov

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk
References:
DOI: https://doi.org/10.33048/smzh.2022.63.615
Abstract: We consider a sequence of superposition operators (Nemytskii operators) from the space of square-integrable functions on a line segment to a separable Hilbert space. Each term of the sequence is generated by a time-dependent family of maximal monotone operators in the Hilbert space. Under sufficiently general assumptions we show that every superposition operator is maximal monotone and study the $G$-convergence of the respective sequence of Nemytskii operators. The results can be used to study the parametric dependence of solutions to evolutionary inclusions with time-dependent maximal monotone operators.
Keywords: maximal monotone Nemytskii operator, $G$-convergence.
Received: 11.04.2022
Revised: 11.04.2022
Accepted: 15.06.2022
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 6, Pages 1169–1180
DOI: https://doi.org/10.1134/S0037446622060155
Bibliographic databases:
Document Type: Article
UDC: 517.988.5+515.126.83
MSC: 35R30
Language: Russian
Citation: A. A. Tolstonogov, “The $g$-convergence of maximal monotone Nemytskii operators”, Sibirsk. Mat. Zh., 63:6 (2022), 1369–1381; Siberian Math. J., 63:6 (2022), 1169–1180
Citation in format AMSBIB
\Bibitem{Tol22}
\by A.~A.~Tolstonogov
\paper The $g$-convergence of maximal monotone Nemytskii operators
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 6
\pages 1369--1381
\mathnet{http://mi.mathnet.ru/smj7737}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=731051}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 6
\pages 1169--1180
\crossref{https://doi.org/10.1134/S0037446622060155}
Linking options:
  • https://www.mathnet.ru/eng/smj7737
  • https://www.mathnet.ru/eng/smj/v63/i6/p1369
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025