|
Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 1, Pages 133–151 DOI: https://doi.org/10.33048/smzh.2023.64.113
(Mi smj7752)
|
|
|
|
Moderate deviation principles for the trajectories of inhomogeneous random walks
A. V. Logachovabc, A. A. Mogul'skiiab a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
c Novosibirsk State Technical University
DOI:
https://doi.org/10.33048/smzh.2023.64.113
Abstract:
We obtain some moderate deviation principles for the random broken lines constructed from the sums of differently distributed independent random variables under broad assumptions about moments.
Keywords:
random walk, large deviation principle, moderate deviation principle, exponential tightness.
Received: 07.11.2021 Revised: 04.10.2022 Accepted: 10.10.2022
Citation:
A. V. Logachov, A. A. Mogul'skii, “Moderate deviation principles for the trajectories of inhomogeneous random walks”, Sibirsk. Mat. Zh., 64:1 (2023), 133–151; Siberian Math. J., 64:1 (2023), 111–127
Linking options:
https://www.mathnet.ru/eng/smj7752 https://www.mathnet.ru/eng/smj/v64/i1/p133
|
|