Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 3, Pages 450–464
DOI: https://doi.org/10.33048/smzh.2023.64.302
(Mi smj7774)
 

This article is cited in 2 scientific papers (total in 2 papers)

The multi-valued quasimöbius mappings on the Riemann sphere

V. V. Aseev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (389 kB) Citations (2)
References:
DOI: https://doi.org/10.33048/smzh.2023.64.302
Abstract: Suppose that a multi-valued mapping $F: D\to 2^{\overline{\Bbb C}}$ of a domain $D$ in the sphere $\overline{\Bbb C}$ with disjoint images of distinct points boundedly distorts the Ptolemaic characteristic of generalized tetrads (quadruples of disjoint compact sets). Suppose that the image $F(x)$ of each $x\in D$ has at most $N$ components, each of which is a continuum of bounded turning. Then $F$, up to the values at some isolated branch points, is the inverse of a mapping with bounded distortion in the sense of Reshetnyak. In particular, if $D= \overline{\Bbb C}$ then the left inverse to $F$ is the composition of a quasiconformal automorphism of $\overline{\Bbb C}$ and a rational function.
Keywords: quasiconformal mapping, mapping with bounded distortion, quasimeromorphic mapping, Ptolemaic characteristic tetrad, continuum of bounded turning, multi-valued mappings of BAD class.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF--2022--0005
The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0005).
Received: 18.11.2022
Revised: 07.02.2023
Accepted: 21.02.2023
English version:
Siberian Mathematical Journal, 2023, Volume 64, Issue 3, Pages 514–524
DOI: https://doi.org/10.1134/S0037446623030023
Document Type: Article
UDC: 517.54
MSC: 35R30
Language: Russian
Citation: V. V. Aseev, “The multi-valued quasimöbius mappings on the Riemann sphere”, Sibirsk. Mat. Zh., 64:3 (2023), 450–464; Siberian Math. J., 64:3 (2023), 514–524
Citation in format AMSBIB
\Bibitem{Ase23}
\by V.~V.~Aseev
\paper The multi-valued quasim\"obius mappings on the Riemann sphere
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 3
\pages 450--464
\mathnet{http://mi.mathnet.ru/smj7774}
\transl
\jour Siberian Math. J.
\yr 2023
\vol 64
\issue 3
\pages 514--524
\crossref{https://doi.org/10.1134/S0037446623030023}
Linking options:
  • https://www.mathnet.ru/eng/smj7774
  • https://www.mathnet.ru/eng/smj/v64/i3/p450
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025