|
Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 3, Pages 546–561 DOI: https://doi.org/10.33048/smzh.2023.64.308
(Mi smj7780)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Conformal envelopes of Novikov–Poisson algebras
P. S. Kolesnikova, A. A. Nesterenkob a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
DOI:
https://doi.org/10.33048/smzh.2023.64.308
Abstract:
We prove that every Novikov–Poisson algebra over a field of zero characteristic can be embedded into a commutative conformal algebra with a derivation. As a corollary, we show that every commutator Gelfand–Dorfman algebra obtained from a Novikov–Poisson algebra is special, i.e., embeddable into a differential Poisson algebra.
Keywords:
Novikov–Poisson algebra, conformal algebra, Gelfand–Dorfman algebra, Poisson algebra.
Received: 03.02.2023 Revised: 03.02.2023 Accepted: 06.04.2023
Citation:
P. S. Kolesnikov, A. A. Nesterenko, “Conformal envelopes of Novikov–Poisson algebras”, Sibirsk. Mat. Zh., 64:3 (2023), 546–561; Siberian Math. J., 64:3 (2023), 598–610
Linking options:
https://www.mathnet.ru/eng/smj7780 https://www.mathnet.ru/eng/smj/v64/i3/p546
|
|