Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 6, Pages 1160–1171
DOI: https://doi.org/10.33048/smzh.2023.64.605
(Mi smj7822)
 

The minimal number of generating involutions whose product is $1$ for the groups $PSL_3(2^m)$ and $PSU_3(q^2)$

R. I. Gvozdev, Ya. N. Nuzhin

Siberian Federal University, Krasnoyarsk
References:
DOI: https://doi.org/10.33048/smzh.2023.64.605
Abstract: Considering the groups $PSL_3(2^m)$ and $PSU_3(q^2)$, we find the minimal number of generating involutions whose product is $1$. This number is $7$ for $PSU_3(3^2)$ and $5$ or $6$ in the remaining cases.
Keywords: finite simple group, generating set of involutions, character of a group representation, special linear and unitary groups.
Funding agency Grant number
Russian Science Foundation 22-21-00733
The research was supported by the Russian Science Foundation (Grant no. 22–21–00733).
Received: 12.03.2023
Revised: 12.03.2023
Accepted: 25.09.2023
English version:
Siberian Mathematical Journal, 2023, Volume 64, Issue 6, Pages 1297–1306
DOI: https://doi.org/10.1134/S0037446623060058
Document Type: Article
UDC: 512.542+512.547
MSC: 35R30
Language: Russian
Citation: R. I. Gvozdev, Ya. N. Nuzhin, “The minimal number of generating involutions whose product is $1$ for the groups $PSL_3(2^m)$ and $PSU_3(q^2)$”, Sibirsk. Mat. Zh., 64:6 (2023), 1160–1171; Siberian Math. J., 64:6 (2023), 1297–1306
Citation in format AMSBIB
\Bibitem{GvoNuz23}
\by R.~I.~Gvozdev, Ya.~N.~Nuzhin
\paper The minimal number of~generating involutions whose product is~$1$ for the groups~$PSL_3(2^m)$ and~$PSU_3(q^2)$
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 6
\pages 1160--1171
\mathnet{http://mi.mathnet.ru/smj7822}
\transl
\jour Siberian Math. J.
\yr 2023
\vol 64
\issue 6
\pages 1297--1306
\crossref{https://doi.org/10.1134/S0037446623060058}
Linking options:
  • https://www.mathnet.ru/eng/smj7822
  • https://www.mathnet.ru/eng/smj/v64/i6/p1160
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025