Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 6, Pages 1304–1326
DOI: https://doi.org/10.33048/smzh.2023.64.614
(Mi smj7831)
 

This article is cited in 1 scientific paper (total in 1 paper)

$BV$-spaces and the bounded composition operators of $BV$-functions on Carnot groups

D. A. Sboev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (370 kB) Citations (1)
References:
DOI: https://doi.org/10.33048/smzh.2023.64.614
Abstract: Under study are the homeomorphisms that induce the bounded composition operators of $BV$-functions on Carnot groups. We characterize continuous $BV_{\operatorname{loc}}$-mappings on Carnot groups in terms of the variation on integral lines and estimate the variation of the $BV$-derivative of the composition of a $C^1$-function and a continuous $BV_{\operatorname{loc}}$-mapping.
Keywords: Carnot group, composition operator, function of bounded variation, mapping of bounded variation.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-281
The work was supported by the Mathematical Center in Akademgorodok under Agreement no. 07–15–2022–281 with the Ministry of Science and Higher Education of the Russian Federation.
Received: 30.06.2023
Revised: 18.07.2023
Accepted: 02.08.2024
English version:
Siberian Mathematical Journal, 2023, Volume 64, Issue 6, Pages 1420–1438
DOI: https://doi.org/10.1134/S0037446623060149
Document Type: Article
UDC: 517.518
MSC: 35R30
Language: Russian
Citation: D. A. Sboev, “$BV$-spaces and the bounded composition operators of $BV$-functions on Carnot groups”, Sibirsk. Mat. Zh., 64:6 (2023), 1304–1326; Siberian Math. J., 64:6 (2023), 1420–1438
Citation in format AMSBIB
\Bibitem{Sbo23}
\by D.~A.~Sboev
\paper $BV$-spaces and the bounded composition operators of $BV$-functions on Carnot groups
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 6
\pages 1304--1326
\mathnet{http://mi.mathnet.ru/smj7831}
\transl
\jour Siberian Math. J.
\yr 2023
\vol 64
\issue 6
\pages 1420--1438
\crossref{https://doi.org/10.1134/S0037446623060149}
Linking options:
  • https://www.mathnet.ru/eng/smj7831
  • https://www.mathnet.ru/eng/smj/v64/i6/p1304
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025