|
Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 1, Pages 74–86 DOI: https://doi.org/10.33048/smzh.2024.65.107
(Mi smj7841)
|
|
|
|
Finite groups with $S$-conditionally permutable Schmidt subgroups
S. F. Kamornikova, V. N. Tyutyanovb, O. L. Shemetkovac a Gomel State University named after Francisk Skorina
b Gomel Branch of International University "MITSO"
c Plekhanov Russian State University of Economics, Moscow
DOI:
https://doi.org/10.33048/smzh.2024.65.107
Abstract:
A subgroup $H$ in a finite group $G$ is $S$-conditionally permutable if for every $p\in \pi (G)$ there exists a Sylow $p$-subgroup $P$ in $G$ such that $HP=PH$. We study the structure of a finite group $G$ whose all Schmidt subgroups are $S$-conditionally permutable.
Keywords:
finite subgroup, Sylow subgroup, Schmidt subgroup, $S$-conditionally permutable subgroup.
Received: 15.07.2023 Revised: 04.09.2023 Accepted: 25.09.2023
Citation:
S. F. Kamornikov, V. N. Tyutyanov, O. L. Shemetkova, “Finite groups with $S$-conditionally permutable Schmidt subgroups”, Sibirsk. Mat. Zh., 65:1 (2024), 74–86; Siberian Math. J., 65:1 (2024), 62–71
Linking options:
https://www.mathnet.ru/eng/smj7841 https://www.mathnet.ru/eng/smj/v65/i1/p74
|
|