Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 3, Pages 469–488
DOI: https://doi.org/10.33048/smzh.2024.65.304
(Mi smj7867)
 

Upper bounds for volumes of generalized hyperbolic polyhedra and hyperbolic links

A. Yu. Vesninab, A. A. Egorovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
References:
DOI: https://doi.org/10.33048/smzh.2024.65.304
Abstract: Call a polyhedron in a three-dimensional hyperbolic space generalized if finite, ideal, and truncated vertices are admitted. By Belletti's theorem of 2021 the exact upper bound for the volumes of generalized hyperbolic polyhedra with the same one-dimensional skeleton $\Gamma$ equals the volume of an ideal right-angled hyperbolic polyhedron whose one-dimensional skeleton is the medial graph for $\Gamma$. We give the upper bounds for the volume of an arbitrary generalized hyperbolic polyhedron such that the bounds depend linearly on the number of edges. Moreover, we show that the bounds can be improved if the polyhedron has triangular faces and trivalent vertices. As application we obtain some new upper bounds for the volume of the complement of the hyperbolic link with more than eight twists in a diagram.
Keywords: Lobachevsky geometry hyperbolic space, volumes of hyperbolic polyhedra, hyperbolic knots and links, augmented links.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0004
Foundation for the Development of Theoretical Physics and Mathematics BASIS
The research was supported by the Theoretical Physics and Mathematics Advancement Foundation “BASIS” and the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0004).
Received: 18.07.2023
Revised: 26.02.2024
Accepted: 08.04.2024
English version:
Siberian Mathematical Journal, 2024, Volume 65, Issue 3, Pages 534–551
DOI: https://doi.org/10.1134/S0037446624030042
Document Type: Article
UDC: 514.132+515.162
MSC: 35R30
Language: Russian
Citation: A. Yu. Vesnin, A. A. Egorov, “Upper bounds for volumes of generalized hyperbolic polyhedra and hyperbolic links”, Sibirsk. Mat. Zh., 65:3 (2024), 469–488; Siberian Math. J., 65:3 (2024), 534–551
Citation in format AMSBIB
\Bibitem{VesEgo24}
\by A.~Yu.~Vesnin, A.~A.~Egorov
\paper Upper bounds for volumes of generalized hyperbolic polyhedra and hyperbolic links
\jour Sibirsk. Mat. Zh.
\yr 2024
\vol 65
\issue 3
\pages 469--488
\mathnet{http://mi.mathnet.ru/smj7867}
\transl
\jour Siberian Math. J.
\yr 2024
\vol 65
\issue 3
\pages 534--551
\crossref{https://doi.org/10.1134/S0037446624030042}
Linking options:
  • https://www.mathnet.ru/eng/smj7867
  • https://www.mathnet.ru/eng/smj/v65/i3/p469
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025