|
Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 3, Pages 591–595 DOI: https://doi.org/10.33048/smzh.2024.65.312
(Mi smj7875)
|
|
|
|
On regular subgroups in $\mathrm{Lim}(N)$
N. M. Suchkov, A. A. Shlepkin Siberian Federal University, Krasnoyarsk
DOI:
https://doi.org/10.33048/smzh.2024.65.312
Abstract:
Let $G$ be the group of all limited permutations of the set of naturals. We prove that every countable locally finite group is isomorphic to some regular subgroup of $G$. Also, if a regular subgroup $H$ of $G$ contains an element of infinite order then $H$ has a normal infinite cyclic subgroup of finite index.
Keywords:
group, limited permutation, locally finite group, regular permutation group.
Received: 16.12.2023 Revised: 16.12.2023 Accepted: 25.01.2024
Citation:
N. M. Suchkov, A. A. Shlepkin, “On regular subgroups in $\mathrm{Lim}(N)$”, Sibirsk. Mat. Zh., 65:3 (2024), 591–595; Siberian Math. J., 65:3 (2024), 639–643
Linking options:
https://www.mathnet.ru/eng/smj7875 https://www.mathnet.ru/eng/smj/v65/i3/p591
|
|