|
Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 4, Pages 636–644 DOI: https://doi.org/10.33048/smzh.2024.65.403
(Mi smj7879)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Finite groups without elements of order 10: the case of solvable or almost simple groups
J. Guoa, Guo Wen Bina, A. S. Kondrat'evbc, M. S. Nirovad a School of Mathematics and Statistics, Hainan University
b N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
c Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
d Kabardino-Balkar State University
DOI:
https://doi.org/10.33048/smzh.2024.65.403
Abstract:
We find all finite almost simple groups without elements of order $10$ and describe finite solvable groups without elements of order $2p$ for an odd prime $p$.
Keywords:
finite group, solvable group, almost simple group, Gruenberg–Kegel graph (prime graph).
Received: 30.11.2023 Revised: 15.04.2024
Citation:
J. Guo, Guo Wen Bin, A. S. Kondrat'ev, M. S. Nirova, “Finite groups without elements of order 10: the case of solvable or almost simple groups”, Sibirsk. Mat. Zh., 65:4 (2024), 636–644; Siberian Math. J., 65:4 (2024), 764–770
Linking options:
https://www.mathnet.ru/eng/smj7879 https://www.mathnet.ru/eng/smj/v65/i4/p636
|
|