Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 4, Pages 672–685
DOI: https://doi.org/10.33048/smzh.2024.65.406
(Mi smj7882)
 

Finite groups with systems of generalized normal subgroups

A. -M. Liua, S. Wangab, V. G. Safonovcd, A. N. Skibae

a School of Mathematics and Statistics, Hainan University
b School of Mathematics, Tianjin University
c Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk
d Belarusian State University, Minsk
e Francisk Skaryna Gomel State University, Faculty of Mathematics
References:
DOI: https://doi.org/10.33048/smzh.2024.65.406
Abstract: Let $G$ be a finite group and let ${\mathscr L}_{sn}(G)$ be the lattice of all subnormal subgroups of $G$. Let $A$ and $N$ be subgroups of $G$ and let $1, G\in {\mathscr L}$ be a sublattice in ${\mathscr L}_{sn}(G)$; i.e., $B\cap C$, $\langle B, C \rangle \in {\mathscr L}$ for all $B, C \in \mathscr L$. Then: $A^{{\mathscr L}}$ is the $\mathscr L$-closure of $A$ in $G$; i.e., the intersection of all subgroups in $ {\mathscr L}$ which includes $A$ and $A_{\mathscr L}$ is the $\mathscr L$-core of $A$ in $G$, i.e., the subgroup in $A$ generated by all subgroups of $G$ belonging to $\mathscr L$. A subgroup $A$ is an $N$-${\mathscr L}$-subgroup in $G$ if either $A\in {\mathscr L}$ or $A_{{\mathscr L}} < A < A^{\mathscr L}$ and $N$ avoids each composition factor $H/K$ of $G$ between $A_{{\mathscr L}}$ and $ A^{\mathscr L}$; i.e., $N\cap H=N\cap K$. Using these notions, we give some new characterizations of soluble and supersoluble subgroups and generalize a few available results.
Keywords: finite group, soluble group, supersoluble group, $N$-subnormal subgroup, $N$-normal subgroup, $N$-$S$-permutable subgroup.
Funding agency Grant number
National Natural Science Foundation of China 12101165
12171126
Belarusian Republican Foundation for Fundamental Research 12311530761
Ф24КИ-021
Ministry of Education of the Republic of Belarus 20211328
20211778
The research was supported by the NNSF of China (Projects 12101165 and 12171126) and the NNSFC–BRFFR (Project 12311530761). Safonov and Skiba were supported by the Ministry of Education of the Republic of Belarus (Projects 20211328 and 20211778) and the Belarusian Republican Foundation for Fundamental Research (Project F24KI–021).
Received: 17.03.2024
Revised: 29.04.2024
English version:
Siberian Mathematical Journal, 2024, Volume 65, Issue 4, Pages 793–803
DOI: https://doi.org/10.1134/S0037446624040062
Document Type: Article
UDC: 512.542
MSC: 35R30
Language: Russian
Citation: A. -M. Liu, S. Wang, V. G. Safonov, A. N. Skiba, “Finite groups with systems of generalized normal subgroups”, Sibirsk. Mat. Zh., 65:4 (2024), 672–685; Siberian Math. J., 65:4 (2024), 793–803
Citation in format AMSBIB
\Bibitem{LiuWanSaf24}
\by A.~-M.~Liu, S.~Wang, V.~G.~Safonov, A.~N.~Skiba
\paper Finite groups with~systems of~generalized normal subgroups
\jour Sibirsk. Mat. Zh.
\yr 2024
\vol 65
\issue 4
\pages 672--685
\mathnet{http://mi.mathnet.ru/smj7882}
\transl
\jour Siberian Math. J.
\yr 2024
\vol 65
\issue 4
\pages 793--803
\crossref{https://doi.org/10.1134/S0037446624040062}
Linking options:
  • https://www.mathnet.ru/eng/smj7882
  • https://www.mathnet.ru/eng/smj/v65/i4/p672
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025